-HD-A131 387 H COHBINFITIJRIHL RPPRDRCH TO SOME SPHRSE HHTRIX PROBLEMS
ANFORD UNIY CA SYSTEMS OPTIMIZATION LAB
S T HCCORHICK JUN 83 S0L-83-5 ARD-18424. 11-MA

UNCLASSIFIED NB8814-75-C-8267 F/G 12/1

Ca il

L AR 400
v ¥, BRI
. e o

o b =
o, = 1
2 s pes

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

L 4 Ciudl sndin Sl semnd
Paghr xonl’ of LS At JE SR et T 0 Acaie et Sl D) - A M T T T T T " 1

00 1044 N A
Systems J

Optimization g
Laboratory i

A COMBINATORIAL APPROACH TO SOME
SPARSE MATRIX PROBLEMS

by
S. Thomas McCormick

b

Y

1

.-

&I TECHNICAL REPORT SOL 83-5 4

June 1983

PDTIC |
(AELECTE p
N, AUG 161333
e WJ:
e D]

LSTABUTION a0 J

DTIC FILE COPY

t Approved {or putic fole 7w,
: 7 Dlsllwuhcn Uithioatet

——

Department of Operations Research b
Stanford University
Stanford, CA 94305

-
~~~
‘o

Y
)
CC
-
<
~
e
¢
Ad
4

PR i o S D
-
4
-]




T T T AT, e e Y e e L S ST TR, Y LWL e TR W T T AW TS

{ Aocession Por j
NTIS GRAXI -
DTIC TAB O !
Unannounced . .
Justificationm— | i

T T SYSTEMS OPTIMIZATION LABORATORY

By —ri DEPARTMENT OF OPERATIONS RESEARCH ]

| Distr.iutron’ - STANFORD UNIVERSITY »

Avai oot s i STANFORD, CALIFORNIA 94305 -
Tigt T ..:‘..Jlle

P\} I : JRap y

:

—

b

.

J

A COMBINATORIAL APPROACH TO SOME y

SPARSE MATRIX PROBLEMS Di

by ]

S. Thomas McCormick E

TECHNICAL REPORT SOL 83-5
June 1983

| - Research and reproduction of this report were partially supported by
. National Science Foundation Grants MCS-8119774, MCS-7926009 and
3 ECS-8012974; the Department of Energy Contract DE-AM03-76SF00326, PA#
DE-AT03-76ER72018; Office of Naval Research Contract N00014-75-C-0267;
Army Research Office Contract DAAG29-81-K-156.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.




P — " ——— T - A T TN TN T——.—" = - - v ——————

Table of Contents

Listof Tables . . . . . . . . . . . . . .t e e e e e e e e e e e e e e e ii
Chapter 1. Introduction )
11: Introduction . . . . . . . . . L L L e e e e e e e e e e e e e e e e e e e e e 1
1.2: Backgroundand Notation . . . . . . . . . . . . . . . . . i e e e e e e e 2
Chapter 2. Approximating Sparse Hessians
2.1: Introduction to Sparse Hessians . . . . . . e e e e e e e e e e 3
2.2: Classifying Approximation Methods . . . . . ., . . e e e e e e e e e e e e e e e e 5
2.3: Classifying Direct Methods . . . . . . . . . . . . . . . . . 0 .00 e e 6
2.3.1: Approximation of Sparse Jacobians . . . . . . . . . . . .. ... .00 7
2.3.2: Classification by Typeof Overlapping . . . . . . . . . . .. .. ... ... ... 7
2.3.3: Classification by Partitioning . . . . . . . . . . . . . .. .0 .00 ... 8
2.4: The Complexity of Direct Methods . . . . . . . . . . . . . ... ... ... ..... 9
2.4.1: The Complexity of Finding Optimal NDCs . . . . . . . . .. ... ... .... 10 .
2.4.2: The Complexity of Finding Optimal SeqDCs . . . . . . . . . . . . ... .... 14 :
2.4.3: The Complexity of Finding Optimal PSmDCs . . . . . . . . . . . .. .. ... 16 g
2.4.4: The Complexity of Finding Optimal GSimDCs . . . . . . . . . . « . . . . . .. 18 :
2.4.5: Other Complexity Results . . . . . . . . . . .. .. ... ... ..... 19 d
2.4.6: Hcuristic Approaches toDireet Methods . . . . . . . . . . . .. ... ... .. 20 ’
2.5: Lower Bounding Elimination Methods . . . . . . . . . . . .. .. ... ... .... 22 4
2.5.1: A General Lower Boundon Evaluations . . . . . . . . .. ... ........ 23 ;
2.5.2: A Bipartite Lower Boundon Evaluations . . . . . . . . . .. ... .. ... .. 26 ]
2.5.3: ExamplesoflowerBounding . . . . . . . . . .. ... . 000, 27 .
2.5.4 Computing Lower BoundsinTheory . . . . . . . . . . . . . . . ... .. ... 30 i
2.5.5: Computing Lower Boundsin Practice . . . . . . . . . . . ... ... ..... 31
2.5.6: A Bound for Higher-Order Derivatives . . . . . . . . . . . . .. ... ... .. 33
2.6: Reflcctionson Sparse Hessians . . . . . . . . . . . . . . .. L. 00 d e e .. 35 X
Chapter 3. Making Sparse Matrices Sparser \
3.1: Introduction to Making Matrices Sparser . . . . . . . . . . . . .. v e ... 36
3.1.1: Relationship to Bipartite Matching . . . . . . . . . . ... ... .. ... .. 37
3.1.2: Dossible Approaches to Increasing Sparsity . . . . . . . . . . ... .0, 38
3.1.3: OverviewofthisChapter . . . . . . . . . . .« ¢« v v i v v v v v v v v v v v 38
3.2: The Matching Property and the One Row Algorithm . . . . . . . . . .. ... ... .. 39
3.2.1: The Matching Property . . . . . . . . . . . ¢ v i v et e e e e e e e 39
322: TheOneRow Algorithm . . . . . . . . . . . .. v v v v v v oo 41
3.3: Theoretical Algorithms for SP . . . . . . . . . . . . .. .o o000 45
33.1: The Parallel Algorithm . . . . . . . . . . . . . v v o o e e e 46
3.3.2: The Sequential Algorithm . . . . . . . . . . .. ... .. .00, 48
333: The SP Decomposition . . . . . . . . . . . 4 i e e e e e e e e e e e 50
3.3.4: The Complexity of the Null Space Problem . . . . . . . . . . . .. .. ... .. 51
34: Practical Algorithms for SP . . . .. . . . . . . e e e e e e e e e e e e 53
3.4.1: Proccssing Rank-deficient Matrices . . . . . . . . . . . . ... ... ... .. 53 ;‘
3.4.2: Processing Matrices without (MP) . . . . . . . . . ... ... ... 55 .
3.4.3: Miscellancous Modifications to SA . . . . . . . . . ... ... 57 ]
3.5: Compmutational Results . . . . . . . . . . . . . . . e e e e e e e e 58 :
3.5.1: An Experimental Implementation of the Algorithm . . . . . . . . ... .. ... 58 .
3.5.2: Testing the Variations of SPARSER . . . . . . . . .« . . v v v v v v v 60 1
3.5.3: Testing SPARSER on Real Matrices . . . . . . . . . . . . v v v v v v v v .. 61 ]
354: Optimizing Reduced Mabrices . . o . . o o o v v e e e e 63 ",
3.8: Conclusions and Extensions . . . . . . . . . . .. L L0 L0 e e e 65 1
Bibliography . . . . . . . .. ... ... ... e e e e e e e 68 1
R
1
i
Y
]
L " L




-, — Py T — CIM IS e T T —— T S 1——‘

List of Tables

Table3.5.1 . . ... .. ... ... P e e e e e e e e e e e e e e e e e e e e e e e 60
Table 3.5.2 . . . . . . . . e e e e e e e e e e e e e e e e e e e 62
Table 3.5.3 . . . . . . . o o e e e e e e e e e e e e e e e e e e e e 84

e

A .

ARAS athRiaidns
A. [

Al aatrar e oo o

o [ e ek - S R . 0 o - PR A AP L DT Py




IR B
@

S

hdirt Sint M Sinte At i i R DA B et e Iariie Zhdtn “Ebe Ydier Wit Yk SRt 6 -_-v—wa-"...wvv-v-"-r-j

Chapter 1

Introduction

1.1. Introduction

Mathematical modeling is a popular tool used to predict or control an uncertain future. The complexities
of a real-world system are abstracted into variables linked by mathematical relationships that are hoped to
capture the essential behavior of the system.

Some models are merely descriptive, that is, they attempt only to predict the course of events based
on a set of assumptions. But many models incorporate control variables that can be adjusted to try to affect
the future. Such models are preseriptive rather than descriptive.

A paradigm from cconomics that is often used in prescriptive models is the assumption that the controls
are adjusted so as to maximise a utility function (or minimize a cost, which is effectively a negative utility).
This point of view makes many prescriptive models into constrained optimisation modcls, which are of

the form
min f(z)

subject to ¢(z) =0 (1.1.1)

where z represents the control variables, f(z) is a “cost” that is to be minimised, and c(z) = 0 represents
the constraints imposed on the variables of the model by the structurc of the system under study.

Since models of the general form (1.1.1) have become widely used, mcthods for solving them have been
intensively studied. A good general reference for practical modern methods of solution is Gill, Murray and
Wright (1981).

As the capacity and speed of computers have dramatically risen, our ability to solve larger and larger
models has also incrcased. But not all advances in methods are attributable to the existence of faster
machines. Sinee the time that the first optimization models were introduced, particularly after the advent of
lincar programming in 1947 (sce Dantzig (1963)), it has been recognized that real-world problems are usually
specially structured. Clever algorithms can take advantage of special structures and speed up the solution of
optimization models. The increases in size and solution speed greatly exceed the improvements in computer
hardware.

One of the earliest and most important kinds of special structure that was recognized was sparsity.
Roughly speaking, sparsity mecans that a variable interacts directly with only a few other variables. Thus in
(1.1.1), sparsity would mean that most of the entries of the Jacobian of ¢ arc zero for all z. Sparsity tends
to appear naturally because most variables in an optimization model interact only with other variables that
are fairly “close” in cither space or time. A classic example is a transportation network, where nodes of the
network interact only with their immediate neighbors.

Sparyity is exploited in two ways by solution methods. First, since most of the polential information
is zero, the number of picces of data that must be stored in the computer is drastically reduced. Sccond,
operations on sparse data can be done faster by cxploiting sparsity. For example, in multiplying two sparse
matrices, products involving a zero need not be computed.

The importance of sparsc methods is evidenced in many ways. Every commercial linear programming
code uscs sparse matrix methods in the representation of the problem and for handling its bases. The most
recent Sparse Matrix Symposium attracted 119 researchers who listened to 60 presented papers. A keyword
search of the on-line Math Reviews on MATHFILE turncd up 413 revicwed papers on sparsity since 1972.

This thesis continues the trend of rescarch into betler ways of exploiting sparsity by considering two
differcnt problema in which sparsity is erucial.

The first problem, discussed in Chapler 2, is to compute a finite-dilference approximation of a sparse
Hessian matrix with a minimum nuinber of gradient cvaluations. For many functions, sparsity allows a




!: VO Ty "{: DAL A e i
: ' . o ! o

(B

I

1

Lon an e o Al e ont

2 Introduction Chapter 1

clever method to approximate the Ilessian with surprisingly few gradient evaluations. Some of the results
in Chapter 2 appeared in McCormick (1981).

The sccond problem, discussed in Chapter 3, is that of making a given sparse matrix cven sparser,
perhaps as sparse as possible. The motivation is that increased sparsity should icad w savings in time and
storage. An earlier version of some of the material in Chapter 3 appeared in Hoffman and McCormick (1982).

This technical report is a reformatted version of McCormick (1983).

1.2. Background and Notation

Though the problems studied in this thesis appear to be numicrical by nature, they are both amenable
to a combinatorial approach. Much of the preiiminary material in Chapters 2 and 3 is aimed at showing
the underlying combinatorial nature of the probicms. The prescntation assumes a basic knowledge of
combinatorics, though referenccs are given as ncw concepts are cncountered. A basic refercnce for graph
theory is Bondy and Murty (1976). Two good refcrences for combinatorial optimiszation, and for bipartite
matching in particular, are Lawler (1976) and Papadimitriou and Stieglitz (1982).

An important combinatorial concept that appears constantly in both chapters is the notion of com-
putational complexity, which attempts 1o determine whether some problems are inherently more difficult
to solve than others. The most important tool available for this purpose is NP-Completeness. Roughly
speaking, a problem X is NP-Complete if it is as hard to solve as any of the well-known hard combinatorial
problems such as the Traveling Salesman Problem or the Graph Coloring Problem. A good reference for
NP-Completeness is Garey and Johnson (1979).

A problem X is shown to be NP-Complete by reducing a known NP-Complete problem Y to X.
Reducing Y to X means that a polynomial way of encoding an instance of Y into an instance of X is
demonstrated that has the property that solving the instance of X also solves the encoded instance of Y.
Thus a fast (polynomial time) algorithm for solving X would also solve Y in polynomial tunc, so that X
can be no easier than Y.

Strictly speaking, it is not known whether NP-Complete problems are actually harder than problems
that have known polynomial algorithms, but the conventional wisdom among complexity theorists is that any
algorithin that solves such a problem must take an exponential number of steps, so that NP-Completeness is
tantamount to practical intractability. This belief should not be taken to imply that there is no hope of ever
making any progress on an NP-Complcte problem. Qne of the most active arcas of complexity rescarch is in
finding and analyzing heuristie algorithms for N1’-Complete probleins (algorithins that only approximately
solve a problem, or efficiently solve a subset of instances).

On occasions we shall want to distinguish between typical problems encountered in practice and ar-
bitrarily structured problems. It is a truism of sparsity research that many practical problems have ill-defined
additional structure that tends to make themn more tractable than, say, randomly gencrated problems. When
we want to refer to this phenomenon, we shall write of “real” or “rcal-life” or “practical” probletns.

Despite attempting to fully “combinatorializc” our problems, at some points their numerical properties
have to be considered. The reader should be aware that finite-precision arithmetic (a mode! of computer
arithmetic) differs in many respects [rom “exaclt” arithmetic. The issues involved in trying to maintain
accuracy in numerical computations are encompassed by the terms numerical stability and conditioning.
An introduction Lo this subjcet is given in Dahlquist and Bjorck (1974).

Our notational conventions arc as follows. A torm is printed in bold-face when it is being defined, and
slanted type is used for emphasis. Capital letters A, B, ..., arc used for matrices and index sets, small letters
a, b, ..., for vectors and scalars, and scripl letters D, G, ..., for graphs and matchings. Theoreimns, equations
and tables are all referred to by a three part number of the form z.y.z, which means the z* occurrence of
that object in major section z.y. The end of a proof is marked by the symboi “0".

Y- Ay |

POTPTTTeT - W

cadk o

N SR

W . ST




o s A T e E T TR TR e

i of wn s Sens dieae Jiass NEndl Sha ahems sk mast it S deivd St AR At it At ot paai R et e i ni S
e L . L e R TR . A i .

Chapter 2

Approximating Sparse Hessians

2.1, Introduction to Sparse Hesslans

In numerical optimization procedures it is sometimes necessary to evaluate the Hessian matrix

H(z%) = (ﬂ(_xﬂ)

az,'(')z,'

of a function F:R™ -+ R. It is usually preferable to evaluate 77{z%) analytically, but it is not always possible
to do so. ¥or instance, ' may not be known analytically (if, say, F is the output of a simulation), F' mnay
be of a form that makes H very complicated to evaluate analytically, or the user of an optimisation routine
may simply be unwilling to provide an evaluation routine for I1. These considerations make it useful for the
designer of a “black box” optimization routine to include a facility for approximating H by finite-differencing.

We shall assume that there is a way to evaluate the gradient of F, call it g(z) = (gg.ﬂ, ceey '—’{—}?), for
use in finite-differencing. The fundamental fact that is used in finite-diflercncing is that if d is a “suitably”
small (sce Gill, Murray and Wright (1981), Scctions 4.6.1 and 8.6, for a discussion of difference interval sizes)
perturbation vector, then differencing ¢ along direction d gives the linear cquations

dTi1(z°) = ¢(z® + d) - g(z°), (2-1.1)

where FI(z0) is an approximation to H(z%). Note that the right hand side of (2.1.1) is calculated from the
gradient evaluation routine, the “unknowns” are the entrics of i/, and (2.1.1) is a system of n equations, one
for each component of the gradient.

The most common and straightforward method of approximating H(z®) is successively to choose d in
{2.1.1) to be a small multiple of cach of the unit vectors e!, €2, ..., e". Let §; be the chosen difference interval
for the i'" coordinate. When d = §;¢' the j'" cquation in (2.1.1) is

6,-5,-,-(::“) = qj(zo + 6.'3") - gj("'o)s

thus allowing s to solve for an approximation to all of row ¢ of H(z®). For any smooth F, H is symmetric,
and so the /1 resulting from the usual method is symmetrized by sctting

fre S(ir+ "),

Though equations (2.1.1) arce Lrivial to solve when unit vectors are used for differencing, the procedure has
s . one great drawback  When considering the running times of optimization routines, the standard assumption
!_- g is that caleulating g(z) is expensive relative to other operations. The value g(z%) must be calculated by an
' optimization routine for other purposes, so we do not include it in evaluation counts. In addition to g(z%),

- the usual procedure requires n gradient cvaluations for cach approximation of I, and so can be prohibitively
L expensive even for moderately large n. As is shown later in Scetion 2.5, when the llessian has no special
b structure the number of gradient evaluations cannot be reduced below n, making explicit approximation of
t. H thrangh linite-diferencing unattractive. In some contexts, adequate approximations to /7 can be obtained
<l cfficiently through other means, see, r.g., the vast literatuee on quasi-Newton methods (Gill, Murray and
5 Wright (1981), Section 4.5.2). However, even with such methods, an explicit Hessian approximation can he
:j-~ useful for distinguishing between a saddle point and a true minimum.

.‘Ev—.—‘
w

DI P P LI P




LA et Shal Baal Eaatt Bhat Sl d St A0 i i AL B I S 2 e e e i e e S A

4 Approximating Sparse Hcssiana Chapter 2

The saving grace is that If often has special structure that can be exploited. Somectlimes it is known
from the structure of the problem that h;;(z) = 0 for sotne ¢ and j, independent of . A Hessian is said to be
sparse when such information is known about a large proportion of its cntries. It is convenient to represent
the sparsity information by a matrix of X's and (’s, where “0” represents an entry known 1o be gero for all
z of interest, and “X” represents any other entry Such a matrix is called the sparsity pattern of //, and
inherits its symmetry. For example, it F(z,y,2) = z* + (y + 2)*, the sparsity pattern of its Hessian is

X 0 0
(0 x )
0 X X

As a slight generalization, note that it may also be known that an k,;(z) is a non-zcro constant
independent of z. Such an entry can be treated almost like a zero in this context, the only difference
being that the constant must be subtracted from the right hand side of (2.1.1) at the appropriate point. For
simplicity, we shall subsequently consider only the zcro/non-zero distinction, though only minor changes are
necded Lo adapt the results to the constant case as well.

As an example of how sparsity can be used to approximate a llessian more cffjciently, consider the
“arrowhead” sparsity pattern (see Powell and Toint (1979), p. 1060):

X 0 0 - X
0 x 0 X
0 0 x  X| (2.1.2)

X X X - X
Choose the first difference direction to be d' = d,¢™. The resulting j** equation in (2.1.1) 13
5,,[;,»,,(:0) = 91(“0 +d') - g.i("'o)-

These equations can be solved for ii,-,.(zo), 7 = 1,2,...,n. Choose the second difference direction to be
d* = Y071 8¢, The jth equation of (2.1.1) is now

6,"1,'1'(1:0) = gﬁ(z + dz) - gi(zo)! ] = 112)“ N - lr

yielding the remaining non-zeros in H. Thus the n cvaluations necessary in the usual method have been
reduced to just two by using special dillerence dircctions. With the assumption that gradieat cvaluation
i expensive, this is a significant saving and makcs finite-difference approximations feasible for large-scale
optimisation.

Suppose further that /I has the following truncated arrowhead structure:

Xoooeo
Xoocooo
XoXeoco
XXooo
X X X XX

Note that the first, second and fifth equations of (2.1.1) arc not uscd in the first cvaluation. If g can be
evaluated component by component, more time could be saved by cvaluating only the third and fourth
components of g(z® + d'). But it often happens that the components of ¢ have common subexpressions that
make evaluating onc componcent of ¢ nearly as expensive as evaluating all of g, causing Lhese apparent savings
o vanish. Also, many times ¢ is available only ax 2 user-written black box, and so it is not possible to specily
that only a subsct of componcents be evaluated. These considerations lead us to assumce henccforth that g
can be evaluated only as a wholc, not componcent by component. Ilowever, it is easy to scc how to adapt

L L., > PR MY - . a2 X A a3 'Y a "

DO v WO e

PrRS

PGP DU W WP © o

ol d AK 4




PP PP
AR AR AP Rl
AR

r

Rt aat)
e W

I -
i « v
A

Section 2.2 Clussifying Approximation Mcthods 5

the output of many of the available heuristics so that onc can take advantage of component by componcnt
evaluation when it is available.

Our gencral goal now is to approximate the Hessian of a given function /' when J/ has a known sparsity
pattern, using the minimum possible number of gradient evaluations. This problem has been previously
considered by several authors, including Powell and Toint (1979), Coleman and Moré (1982) and Thapa
(1980), Scction 5.1. In order for an npproximation method to be practical it must be fast and it must be
numerically stable. Searching for a balance between these two competing goals has led previous researchers
to consider the problemn uader various restrictions on the form of equations (2.1.1). A systematic way of
classifying these restrictions is prescnted in Scction 2.2, and a subclassification of the so-called direct methods
is presented in Section 2.3.

In order to better understand the cxamples in Secctions 2.2 and 2.3 and to be able to analyze the
complexity of different classes of metheds, it is helpful to have a graph representation of sparsity patterns.
Since the sparsity pattern of H is symmectric, a natural model to choose is the graph G(H) with node set
N={1,2,....n}andedges I = { {1,7} | hijis not known to be 0}. Thus the symmetry of IT corresponds
to the undircctedness of G(1/). When drawing pictures of G(H), loops that stem from non-zero diagonal
entries in // will be suppressed. For example, the following sparsity pattern corresponds to the displayed

graph:
X ¥ 0 0
X X X 0 - I z
0 X X X
0 0 X X

Conversely, any undirected graph (possibly with loops) clearly corresponds to the sparsity pattern of some
matrix H.

Using this graph model, it is proved in Section 2.4 that all the variations of the direct methods considered
in Section 2.3 are NP-Complete. Secction 2.4 concludes with some positive results about heuristics for direct
methods to counterbalance the negatlive complexity results.

In order to be able to quantify the performance of heuristics, it would be useful to have an easily
computablc lower bound on the number of evaluations nceded. The number of evaluations nceded when no
restrictions are placed on the difference directions is clearly a lower bound. Some results about this bound
and how to compute it eflicicntly are presented in Section 2.5.

This chapter of the thesis concludes with Section 2.6, which points out the unresolved questions in the
preceding scctions and suggests areas for future research.

2.2. Classifying Approximation Methods

Denote (g(z® + d')— g(z°))T by A and an approximation to I/{z) by /7(z). An approximation method
is an algorithm that, when given F' and the sparsity pattern of its Hlessian, chooses fixed (independent of z)
difference directions d!, d2, ..., d* 30 that the nk equations

=%d = A", 1=1,2,...,k, (2.2.1)

(which are just (2.1.1) re-written in the new notation) have a subsystem that can be uniquely solved to yicld
f1{z°). When the i,j entry of the sparsily pattern is zero, f; ( = hj;) is sct to zero in (2.2.1). Because of
the assumed symmetry of the Ilessian, variables il.',' and ilj; arc identified. Many approximation mcthods
determine I‘u,-j and it,-, as il they were different, which leads to over-determined linear systems when they
are identified. This is the reason why it is required that only a subaystem of (2.2.1) uniquely determine the
nofn-zcro ﬁ.-,v 's. For example, the usual method that chooses d¥ = §;ef, § = 1,2,...,n, is an approximalion
method, where the unknown &y, i 7# 7, appears in both the 7'M equation for &* and the i*" cquation for d”.
Deleting equation j for d' when j < 1 leads to a subsystem of {2.2.1) that can bu uniquely solved for f7(z?).

POV iy GPPPTETY

sl ik

o2

UPIPEIOr ST ey eenan

T PR TR N ".“ -

o




T e e w e e, e T TR TR T e e TR T R TR e e e e e R T L T e T e T T e

6 Approximating Sparse lessians Jhapter 2

For n = 3, this subsystem is of the form .4
61 ’}u Aj
b2 his a;
b3 ihs A.%

A = . 2.2.2 :

b2 hao AG (222) <

b3 hua a3 .,‘

83 hga Ag B

The efficiency of an approximation method depends on two factors. First, since evaluating the gradient
is assumed to be expensive, the ideal approximation method would minimize k, the number of diflcrence
directions used to form equations (2.2.1). Finding the k diffcrence directions is a onc-time cost; since
the sparsity pattern of H is independent of z, the difference dircctions are generated at the start of the
optimization and used at every iteration thereafter.

Second, once a set of difference directions has been found, equations (2.2.1) must be solved for f(z9).
Solving a diagonal system of equations like {2.2.2) is both I'asl,cr and more numerically stable than solving
a general system of equations. The solution cost is incurred whenever the iHessian is to be evaluated. If an
approximation method generates a sct of equations (2.2.1) which are ill-conditioned, fI may not be a good
approximation to /H, and the convergence rate of an optimization procedure may suffer. Also, if solving
equations (2.2.1) is very difficult, then the approximation method may contribute an unacceptable overhead
to optimization.

Thus a smaller k& may lead Lo fewer gradient cvaluations per iteration, but also to spending more
time in solving cquations per itcration. This tradce-off has led rescarchers to the realization that practical
approximation methods may need to restrict the form of equations (2.2.1). Powell and Toint (1979) classify
approximation mcthods as [ollows. If, as in (2.2.2), the approximation method always gives risc to a diagonal
subsystem, it is called a direct method (since the Lliessian can be solved for directly). The usual unit vector
method is a dircct method. If the subsystem can always be permuted into triangular form, the approximation
method is called a substitution method (since the elements of the Hessian can be solved for by -imple
substitution). Finally, if subsystems can arise which cannot be permuted into triangular form, the method
is called an elimination method (since some sort of Gaussian climination must be applicd to solve for H).
Fxamples of substitution and climination methods are exhibited in Section 2.5.

The next section will show that it is uscful to break down these classes of methods further into subclasses.
Given a particular subclass S, our goal is to find a fast optimal incthod in §. That is, given a sparsity
pattern H, an optimal method in S generates diffcrence directions d',d?,. .., d* so that (1) the restrictions
of S are satisficd and (2) k is as small as possible for this II. To be practical, an optimal method must be
fast in finding the d; although this is a one-time cost, it should not contribute too much overhcad to the
total optimization time. After the next section classifies the dircct methods, Section 2.4 shows that in a
certain technical scnse, there are no fast optimal direct methods for any of the classes of direct methods.

TIPS - J SRR 3 W

,zv s

2.3. Classifying Direct Methods

This scction considers dircct methods for approximating Hessians. An eutry of {1 which is not known
to be zero is called an unknown, and unknowns h,J and h,. are identified. The defining restriction of direct
mcthods turns out to be cquivalent to a relationship between the sparsity pattern of I and the zero/non-icro
structure of the d'. To sce the cquivalence, regard the non-zero components of each d' as specifying a subsct
S, of the column indices of f/. The set 8; is called the I** group of columns of II. When two columns
- belonging to §; both | we an unknown in row 1, we say that there is an overlap in S in row 1. For example,
consid: Lhe spars’ _attern:

S - PSR 4

A R

X 0 X
oxx)«»
X X X 3

The group corresponding to d == (1, 1,0)7 consists of columns { 1,2}, which overlap in row 3 bul not in row
2.

S CCENCAR A AR
S AR

4

p 4

.

-
.

VoRTuTvTyTITTwTR o




| hg |
o - - R S

e A ORI

Pat { bl st Sadul gt dngu-al ol ngts Shie Sumh Aol Bt Ni"Nin, Shshai e e A A A R B I

Section 2.3.1 Approximation of Sparse Jacol’ ans 7

The set of directions {d'} chosen by a direct method gives rise to equations (2.2.1). In order for (2.2.1)
to have a diagonal subsystem that can be solved for all the unknowns in /I, each unknown il,'j (or il,'.') must
appear by itsclf in at least one equation, say the equation for row 1 in the sct of equations arising from df.
This condition implics that j € S, and that there are no other unknowns in row s of S; (otherwise, il.-,- would
not be the only unknown in the i** equation of d'). Thus, for ft;,- to be determined directly, S; can have no
overlap in row i. The family of coluinn subsets { S;} corresponding to the directions { d'} computed by a
direct method must therefore satisfy the

Direct Cover Property (DCP): For cach unknown ,Al.',' = il,-.- there must be an S; with either 5 € S;
and no overlap in row ¢, or ¢t € S; and no overlap in row j.

Conversely, given a sparsity pattern and a family { S;} of column subsets satisfying (DCP), the set of
difference directions df = Zjes. Jjej can be defined, which correspond to a direct method. Thus finding an
optimnal direct method is equivalent to the purely combinatorial problem of finding a minimum ecardinality
direct cover.

2.3.1. Approximation of Sparse Jacobians

Direct approximation methods for Ifessians have evolved out of previously studicd methods for ap-
proximating sparse Jacobians of functions I': R™ — R™ by finite-differencing. An example of the idea in this
case is that if a Jacobian has the sparsity pattern

X 0 0 X 0
x 0 0 0 X
0 x 0 0 xJ
0 0 X X 0

then differencing F along d' = (1,1,1,0,0) and 4% = (0,0,0,1,1) approximates the Jacobian in just two
function cvaluations rather than five, since there is no overlap among the first three or last two columns.
There arc also other applications of finding minimum groupings of non-overlapping columns; see, e.qg.,
Deneker, Dirre and Heult (1981) or Diirre and Fels (1980). The possibility of such reductions in function
evaluations has caused the problem of linding a minimum set of dilfercnce directions to be thoroughly
studied. Several heuristics for finding “good” sets of dircctions have been investigated (see Curtis, Powell
and Reid (1974), and Coleman and Moré (1981)). The computational complexity of finding an optimal set
of difference dircctions in a direct Jacobian approximation method has also been investigated, resulting in
the next theorem.

Theorem 2.3.1: (Colenan and Moré (1981), Theorem 3.3, and Newsam and Ramsdell (1982), Theorem 1)
Finding an optimal sct of diffcrence dircctions for directly approximating a Jacobian is NP-Complete. (0

2.3.2. Classification by Type of Overlapping

The llessian problem is significantly more difficult than the Jacobian problem because of the symmetry
of the matrix. Various heuristic approaches to finding optimal direct covers have been proposed. We review
next the history of these efforts, and then propose a new way of classilying dircct methods.

Onc obvious approach to approximating Hessians is simply to apply one of the Jacobian methods to
the symmectric sparsity pattern of the [essian. Such an approach leads to familics of subsets of columns
whose subsets have no overlap in any row. As long as every column is in some subsct, such a family clearly
satisfics (DCP), so that any direct Jacobian approximation method immediately becomes a direct method
for Hessians. A dircct cover which has no overlap in any row of any group is called 2 non-overlap direct
cover (NDC). The first NDC heuristic for Jacobians was proposed by Curtis, Powell and Reid (1974), and
it was later improved by Coleman and Moré (1981).

Powell and Toint (I' 79} recognized that a significant decrease in gradient evaluations can be achicved
by taking advantage of symmetry. For example, recall the arrowhead sparsity pattern (2.1.2). Since every
columnn overlaps with every other, any NDC nust contain at least n groups (and of course n sulfice). But, as
was shown in Section 2.1, if the first difference direction is d' = éne™, then it docs not matter if subscquent




8 Approximating Sparse Hecasians Chapter 2

columns overlap in row n since the unknowns in row n have already been determined by the first evaluation
and symmetry. Exploiting this observation reduces the aumber of gradient evaluations for this example from
n to two.

In general, if S) has no overlaps in any row and if 5 C S|, then by symmetry row ) 15 completely
determined alter the first evaluation, and so overlaps in row 3 can be ignored in lawer groups. Thus we
consider familics of column subscts with the following property:

Sequential Overlap Property (SOP): Group S; can have an overlap in row i only if therc is a k < {
with t € Si.

For an unknown iu;j, define the minimum index group of iz;,- to be p = min{!| cither : or ; belongs
to group [ }. When (SOP) holds, iz,,- must be the only unknown in its row in group p, so that (DCP) is
satisfied. Direct covers with (SOI’) are called sequential overlap direcct covers (SeqDC). Note that any
NDC algorithm that generates its groups sequentially can casily be converted into a SeqDC algorithun by
deleting the columns and corresponding rows of group S before finding group Si41.

Powell and Toint (1979) showed that there arc sparsity patterns for which an optimal SeqDC is not an
optimal direct cover. Their example is:

X X X X 0 0
X X X 0 X 0
X X X 0 0 Xx ’
X 0 0 x 0 0 (2.3.1)
0 X 0 0 x 0
0 0 x 0 0 X
- It is easy to see that any SeqDC for (2.3.1) requires at least four groups, but that {{1,5},{2,6},{3,4}}is

a dircet cover of size only threc. Thapa (1980), Section 5.1, proposed a method that trics to Luke advantage
of such situations, and that produces a direct cover which may not satisfy (SOI’). Direct covers that do not
necessarily satisfly any additional restrictions are called simultaneous overlap direct covers (SimDC);
F any direcl cover is a SimDC.

Note that NDC C SeqDC C SimDC and that these inclusions are strict, as shown by (2.1.2) and (2.3.1).

2.3.3. Classification by Partitioning

All of the heuristic methods mentioned above produce partitioned dircct covers, that is, every column
belongs to exactly one group. Fven when there arc no zero columns, not every column need belong to some
group in a valid direct cover. Consider

0 X\
x x)

{{2 } } is a direct cover (in fact, an NDC) of minimum size, yet column one belongs to no group. But when
h,. is an unknown, column s must bclong to some group in order for h.. to be determined. When I arises
from unconstrained optimization, h“ is usually non-zero for all ¢, which implies that all colummus must be
in some group. Thus, unless otherwise stated, henceforth it is assumed that A, is an unknown for all 3, so
that only direct covers containing every column nced to be considered.
Now consider a SeqDC in which columns may appear in morc than one group. Il every occurrence of
cvery columin in a group other than its sinallest index group is deleted, (SOI’) holds since cach unknown
. is determined by its minimum index group. Thal is, since cach unknown is determined by a column in its
' minimum index group, any later occurrences of that columan are superlluous, and there can be no occurrences
of that column in an earlier group by the definition of minimum index group. Thus, for Seql)Cs (and also
for NDCs since NDC C ScqDC), it suffices to consider only partitioned direct covers.

LU S G 1




- e = v Te . T T T e R e T, R L Ty Ry R

A SCh AT ara i e e T BRne AN 1 S T SR A S NS 0. PP T

Section 2.4 The Complexity of Direct Methods ]

Unfortunately, the same is not true for SimDCs. Consider the sparsity pattern:

XX XXooX
OX XoX X
XooX XX
coX X X oX
oo X XeoXX
exXoooXX
XoooexXxoX
1

Laborious calculations verify that any partitioned simultaneous direct cover (PSimDC) must use
at least five groups, whereas {{1,2},{1,3},{4,6},{5,7}} is a general simultaneous direect cover
(GSimDC) which usecs only four groups. This is the smallest possible such example in terms of number of
columns. Bisenstat (referenced in Coleman and Moré (1982), equation (2.1)) has discovered an infinite class
of such examples.

These two classifications give four distinet subclasses of direct covers: NDC, SeqDC, PSimDC and
GSimDC. The next section shows that finding an optimal member each of the four classes is NP-Complcte.

2.4. The Complexity of Direct Methods
The main purposc of this section is to prove the following four theorems:
Theorem 2.4.1: Finding an optimal NDC is NP-Cotnplete.
Theorem 2.4.2: Iinding an optimal SeqDC is NP-Complete.
Theorem 2.4.3: Finding an optimal PSimDC is NP-Complete.
Theorem 2.4.4: Finding an optimal GSimDC is NP-Complete.

Recall from Section 1.2 that to prove that a problem X is NP-Complete it is necessary to reduce a
known NP-Complete problem to problem X. We shall use three kuown NP-Complete problems. The first
is the direct Jacobian approximation problem already discussed in Scction 2.3. The sccond is the

3-Satisfiability Problem (3SAT): et uy,uz,...,u, be asct of atoms, with the corresponding set of
literals I, = {u;, %y, u2, %2, ..., Un,0n }. et C = {C1,Cy,...,Cp } be a sct of 3-clauses drawn
from L, that is, each C, C I, and |C,] = 3. s there a truth assignment 7 : {uy,...,ua} —
{ true,false } such that each C, contains at least one u; with r{u;) = true or at lcast one #; with
r(u;) = false?

The set of clauses is an abstraction of a logical formula; imagine the clauses as parenthesized subformulae
whose literals are connected by ‘or’, with all the clauses connccted by ‘and’. Then a satisfying truth
assignment makes the whole formula true,

The third problemn is the

3-Color Graph Coloring Problem: Given a graph § = (V, I), docs there exist a function f:V —
{1,2,3} such that f(v) 5# f(u) whenever {v,u} € E?

This problem remains NP-Complete even when G is restricted to be planar (scc Garey and Johnson
(1979), Theorem 1.2) Note that 3GCP is a restricted form of the classic problem of linding the chromatic
numbcer of a graph. The NP-Completeness of the Jacobian ditect approximation problem was stated in
Theorem 2.3.1  The NI-Completeness proofs of 3SAT and 3GCP are referenced in Garey and Johnson
(1979), Problems LO2 and [G'V4] respectively,

A graph operation thal is needed in two of Lhe proofs is the notion of edge replacement. Given a
graph G and edge ¢ {n,v} in G, and graph K with two distinguished vertices s and ¢ called terminals,
the result of replacing edge ¢ of G by K is obtained by removing e from § and identifying u with 3 and v

g a e -

a AAEA‘J"‘

-y

-4

4




e e A Bwn laes Aen B e -aan " — — PR———

10 Approximating Sparse Hessians Chapter 2

with t. For example, if

then replacing e with K yields the graph:

All the proofs depend on the equivalence between lHessian sparsily patterns and undirected graphs
mentioned in Section 2.1. Throughout this section, § denotes the graph associated with /1.

If a polynomial algorithm cxists for finding an optimal direct cover of any type, it must in particular
work on sparsity patterns whosc diagonal entries are all unknowns. Thus it can be assumecd wilhout loss
of generality that every column index belongs o at least onc group. A dircct cover then associates wilh
each vertex of § the index of the group (indices of groups in the case of GSunDCsj to which its column
belongs. Such an association of integers to vertices is a graph coloring, whose type depends on the nature of
the associated dircct cover. In each of the four cases, we shall establish what sort of coloring 1s involved and
show that the problem is NP-Complete. Note that in every case two adjacent vertices &+ and j cannot be the
same color because then neither h.. nor hJJ could be determined directly due to overlap with h., Thus the
generalized graph coloring must be a usual graph coloring as well.

2.4.1. The Complexity of Finding Optimal NDCs

We shall give two proofs of Theorem 2.4.1, the first very general and complicated, the second quite
specific and short.

In an NDC, two columus in the same group, i.e. two vertices of the same color, cannot overlap. Column
1 overlaps column j if hy; and ilg, are both unknowns, t.e., if vertices 1+ and j are both adjacent to vertex
k. Thus in the coloring of G, no two vertices of Lthe same color can have a common neighbor. Conversely,
given such a coloring of §, clearly no two columns in the associated groups can overlap.

If distance from vertex ¢ to vertex j in the graph is measurcd by “minunum number of cdges in any
path between & and 57, then any two vertices of the same color must be inore than two units apart. In the
usual Graph Coloring Problem, any two vertices of the same color must be more than one unit apart. Then
a common generalization is a proper distance-k coloring of a graph §, which is a partition of the vertices
of G into classes (colors) so that cvery pair of vertices of the same color is more than & units apart. The
associated oplimization problein is the

Distance-k Graph Coloring Problem (DkGCP): Given a graph G, find a proper distance-k coloring
of G in the minimuin possible number of colors.

The usual Graph Coloring IProblem (GCP) is DIGCP, and the optimal NDC problem is equivalent to
D2GCP. We shall use this equivalence to show that the optimal NDC problem is NP-Complete by showing
that D2GCDP is NP-Complete; in fact, we shall show the stronger result that DEGCP is NP-Complete for
any fixed k > 2.

To show that DEGCP is NP-Complete, 3SAT will be encoded into it. To lacilitate the encoding, DEGCP
must be recast as a decision problem. As is standard with optimization problems, DEGCP is re-phrased o
“Is there a distance-k coloring that uses p or {ewer colors?” In a slight abusc of notation, et DKGCP refer
1o both the optimization problemn and the related decision problem. Our encoding is a generalization of the
once found in Karp’s original proof (1972) of the NI*-Completeness of GCI*. The first proof of Theorem 2.4.1
requires the exclusion of the case in which a clause contains both an atom and its negation. Bul such elauses
arc always trivially satislicd, and s0 henceforth “SSAT” will incan “3-Satisliability without trivial clauses”
Also, it is assumed (without loss of gencrality) that n > 4. Then for any clause Cy, there is an atom u, with

U, Q/Cj, and %, Q’C,

M el o -an Sy " W TR R N e




e

T T Ty N
- L

rrrf -

P A S e g

Section 2.4.1

The Complexity of Finding Optimal NDCs 11

Given a 3SAT problem P, we construct from it a decision problem on a graph Gi(P). I P has atoms

Uy, u2,...,%n and clauses Cy, C»,
vertices and edges of Gx(P), and dcfine them by:

ug, U
V =
I or=1,..,k-1

'{u.-,n.-} all 4
{(FLFM)
{T5.7:""}
{F7. 7"}
{F' ﬁ"}
{T:.T'}
{l:,l:+|} all r
RN
{I:,u.} fu; €C,
{I1\,%;} ifu,eC,
{"l"Fi}
il

all r, all § 3£ 5

all s

{C?'F?} ulrﬁlQ/C
L {C:‘.T?} all ¢

F:vT:o '=lv""k}i=l.”.
e Y

all s ¢, all s

'} all s, k even

.+Cmy let h = [k/2] and p = 2nk + m(k — 1). Let V and E denote the

literal vertices, false ver-

'™ tices, true vertices

clause vertices, intermediate
vertices

u;, U; different colors

all F's, T's different colors

C? different color than its
literals

u;, % can only be F! or
T}

C%, r > 0, different from
each other and F’'s and
T's

C? can only be F! colors
of its literals

Note that Gi(P) is considered only for £ > 2, implying that A + 1 < k, so that A + 1 makes sensc as a
superscript for the M's and the 7's The global structurc of Gi(P) looks like

nN—n— —n'—Cl—...—Cch*'— C““

Fl—

Tye—oie TA— Ti‘*" —_ .—‘Tt_ﬁ.i

Three propositions about the structure of a proper distance-k coloring of Gi(/) are needed for the proof.

Proposition 2.4.5: The vertices /7, T7, and C]1, { =
diflerent colors, thus using up all p colors,

Prool: Consider the leugth k paths

’v‘! '___F’
A=t o

1...

me=1,...,m r=1,...,k must all have

k
.o —F"

— =T

P

PR

PR S W e T T




DI Sl A s — Rl A P S i Fath APl A A S S S i i R i i

12 Approximating Sparse Hcssians Chapter 2

which demonstrate that all F's and 7"s must be diflerent colors. Now consider the leagth k — 1 paths

, , F:H'l—l"'.H"l —-'-—I":-‘ '
C:—C: _"'—(I:‘—{T!H'I—T;'W'I S— (2.4.1)
1 4 1 ]

which show that no C?, 0 < ¢ < h can be any ¥ or T] color, r > h. The length at most k£ — 1 paths

_ B F?+l——1"?+z __I,*l.k
ci'—ci? —"'—'Cf—‘{T{wn_T@n %
L] 1] 1]
show that no C%, h < ¢ < k can be any F] or T color, r > h. Let [ be an index such that u; ¢ C, and
@ ¢ C,, and consider the length k — 1 paths

Th—Th ! .. T! kodd
1 ... —(Ch-1__ [ i [
C. e {C',‘— T —. . —T! k even (242)
which show that no C%, 0 < ¢ < h can be any 17 color, r < h. The length k paths
Ph—Fh —ph ' ..~ F'  kodd
1_ 2 ... _(Oh-1 { i [ [ ¢ .
C. C. C. {cv:;_l,"h — F:‘ . —'F: k even (ZAJ)
show that no C%, 0 < g < h can be any F{ color, r < h. The length &k paths
FAU_pen
k— rh— () <
Ch-l—Ck-2 _..._of_{T?H_TZ. — 7
show that no C¢, h < ¢ < &, can be any F] or T color, r < h. The length k - | paths
Th—CP ' —CF2—...—C)  kodd
1 __O2 e . O ] t t t
¢.—¢C, c. {Ci‘— C} —C!'—...—C} keven (244)
show that no C{ can be the same color as any C}, 0 < ¢, r < h. Finally, the leogth & 1 path
Cl—C? —...—Ch—Ch—C}*! —e=C! (2.4.5)

shows that no C can be the same color as any C}, A < q, r < k. 0

Sinee F}, T; and C?, ¢ > 0, usc up all the colors, the colors are subsequently referred o by these vertex
namcs.

Proposition 2.4.6: Vertices u; and &; must be colored F! and T! in some order, s = 1,...,n.

Proof: Let j # ¢ and consider the length k paths

PO gt it

] vk— k—
u PO —F — . —F)
iz-'}— T —T¢' — . —T? (2.4.8)
T p—

Ch'—Ch~* —...—C]

which show that u; and %, cannot be any color other than #! and T'}!. Also, u, and u, certainly cannot be
the same color. [

Thus a proper distance-k coloring of Gix(/F?) induces a truth assignment on the literals.

A=A

)

PP PP




1mem Y

v
[

L
3
-

-‘

Pl At Aaut Atk Al Sl 2t B PR SuP Mt R

Section 2.4.1 The Complexity of Finding Optimal NDCs 13

Proposition 2.4.7: If the literals in clause C, have indices a, b, and ¢, then C‘_’ must be colored F!, F i,
or Flia=1,...,m.

Proof: Note that C9 can be added to the beginning of the paths in (2.4.1), (2.4.2), (2.4.3), (2.4.4) and (2.4.5),
thus excluding all colors except F! from C9. If [ is an index such that u, ¢ C,, W & C,, then the edge
F}—F?} can be dropped from (2.4.3) and C? can be added to the beginning to show that C? cannot be any
F} color cither. O

Now the Ni*-Completcness theorem can be stated and proved, which will then immediately imply that
finding an optimal NDC is NP-Complete. This theorem is a symmectric version of a result in Section 3 of
Coleman and Moré (1981).

Theorem 2.4.8: For fixed £ > 2, DkGCP is NP-Complcte.

Proof: Since the size of Go{P) is a polynomial in m and n, it is clear that the above reduction of 3SAT to
DkGCP can be carried out in polynomial time. It must be shown that there is a satisfying truth assignment
for the 3SAT problem I’ if and only if the graph Gi(P) has a proper distance-k coloring in p or fewer colors.
First suppose that Gx(P) is properly distance-k colored. If {5, Iy, and [, are the literals contained in C,,
then the length k path
CO—*t k-2 ... —y

shows that C? cannot be the same color as any of I, Iy, or l.. But C? must be colored I}, F}, or F! by
Proposition 2.4.7. By Proposition 2.4.6, cach ; is colored cither F! or T'!, so that cach clause must contain
at least one true literal under the truth assignment induced by the proper coloring, i.e., the clauses are
satisfiable.

Now it suffices to show that Gi(P) can always be colored in p or fewer colors if P is satisfiable. Let 7
be a satislying truth assignment for C\,C5,...,Cm. First color the FI’s, T7’s and C7's, r > 0, as decreed
by Proposition 2.4.5. Color u; with 7! if r(u;) = true, color u; with F! othcrwise; color #; with the
complementary color. Each C, has at lcast one truc literal, say l,. Color C? with color F!. Finally, color
I, with €, r =1,...,k~ 1, where the subscript on C7, is interprcted modulo m.

We now show that this coloring is proper. The colors F?, T?, 1 < r < k, each appcar on only one
vertex and so are proper. Color C7 ., appears on exactly two vertices, itself and /7. A shortest possible path
between these vertices in Gu(P) is

u - _ .
- ——i—{al—rs —cti—cki— . —cu.,

and is of length k + 1. It is a shortest path because at least k edges must be used to get from layer I7 to layer
C,, and onc extra edge must be used to get from an F or a T to a C. Also, any alternative path between
thesc vertices that goes through a CQ has at least k + 2k cdges because of the difference in subscripts, and
because the C7's do not interconnect for r < h; thus color C7 is proper. Color T'! also appears on exactly
two vertices, itsell and one of u; or %;. A shortest possible path between these vertices is the third one in
(2.4.6) with T'! added at the end. For 5 3£ 4, at least k cdges must be used Lo get from the u, layer to the
T! layer, and an extra edge is necessary Lo go from an § vertex to a j vertex. Any other path between these
vertices through the I's uses ab least k + 2h — 1 edges, and so T} is proper. Finally, F'! can appear in theee
places: on itself, on », or @;, and on any number of (,"."s whose clauses contain cither u; or #%,. As with u; or
@; and 7'} above, u, or @; and F'! do not cause a conflict. Some shortest possible paths between F! and any
C? are those in (2.4.3) with C? added to the beginning. Again, at least k cdges arc necessary to go from the
C9 layer to the F} layer, and an extra edge is necessary to go from an ! vertex to an i vertex. Any other
path between these vertices through the I's uses at least 2k edges, so that no C?, F! pair causes a conflict.
Between a u, or &, and a7, some shortest possible paths are

L
o 17}_(/‘5—' —_—— (,': -——Cg

of lengths k ard k + 1 respectively. The first cannot exist beeause of the truth assignment and because there
are no trivial elausex. Onee again, the sccond muat, usc k cdges going from layer u, to layer (09, and an oxtra

o L - PP U WY W WY RPN SR WY e et ot Py

b A Y

i

-4

Pl F I S WP

3
4
9
4
L
B

SV - PRGN TR N - PRI )

i




CHAUERE ool SR e AU SRR SR A/

-

@

. '. R,
« s e N
R . [

e Wy

14 Approximating Sparse llcssians Chapter 2

edge going from an F or a T to a C, so that no u, or G;, C? pair conflicts. Finally, a shorwest possible path
between C? and C? is (2.4.4) with C? added to the beginning and C? added to the end, of length &+ 1. Any
other path between these vertices through the I’s uses at least 2k edges, so that no F'! color conflicts. Thus
the coloring is proper, and the theorem is proved. [

Seccond Proof of 2.4.1: This proof is due to Hoffinan (1982). The direct Jacobian approximation problem is
reduced (o finding an optimal NDC.
Given an m X n Jacobian sparsity pattern A, consider the symmetric (m + n) X (m + n) matrix

=G 9

where J is the n X n matrix of all ones, and [ is the m X m identity. Suppose that there is a polynomial
algorithm for finding optimal NDDCs, and apply it to H. Since cach of the first m columas of /I overlaps
with all other columns, cach of the first m columns must appear by itself; but finding an optimal NDC for
H \hen essentially reduces to finding a minimum partition of the last n columns of H into non-overlapping
groups. However, such a minimum partition solves the direct Jacobian approximation problem, which is
NP-Complete. Thus finding an optimal NDC must be NP-Complete as well. [

2.4.2. The Complexity of Finding Optimal SeqDCs

We now consider the sort of coloring of § induced by a SeqDC. The first color must be non-overlapping;
hence, as in the NDC case, no two color 1 vertices can have a common ncighbor. Now, since overlap in
the group 1 rows no longer matters, the row and column indices in group | can be deleted from H, and
the group 2 columns can have no overlap in the reduced H. In graph terms, the reduction of the matrix
corrcsponds to deleting the color 1 vertices (and their incident edges) from § and requiring that the color 2
vertices have no common neighbors in the reduced §G. The color 2 vertices are then deleted from the graph,
and so on. Thus a SeqDC with k groups is equivalent to a

Sequential k-Coloring: A sequential k-coloring of a graph § is a function f:V — {1,2,...,k} such
that no two vertices u and v with f{u) = f(v) = { have a common neighbor in the graph obtained
by deleting all vertices w with f(w) < { from §.

We shall show that it is NP-Complete to decide whether a graph § has a sequential 3-coloring.

Proof of Theorem 2.4.2: This proof is due to Stockmeyer (1982). We shall reduce 3SAT to the problem of
deciding whether § has a sequcntial 3-coloring. By the equivalence between SeqDCs and sequeutial graph
coloring, the reduction will show that finding an optimal SeqDC is also NP-Complete.

Given an instance P of 3SAT, a graph § will be constructed such that P has a satisfying truth assignment
if and only il there is a scquential 3-coloring of §. For each atoin u of /”, make a 6-cycle in § with two
adjacent vertices labelled u and %, as follows:

By exhaustive enumeration it can be verified that the only two possible ways to 3-color the above graph
properly and scquentially are:

(2.4.7)




TTATRETT TR T e T LT WTw T WTw e T W, T T T e T - T ™

Section 2.4.2 The Complexity of Finding Optimal SeqDCs 15

Connect these 6 cycles according to the clauses of P as follows. For each clause C; = {{,,l3,13 }, add
the nodes and edges

[ SR SR ¢ S 5,

to G, where !y, l2 and l3 are the literal vertices on the 8-cycles.
For example, if P has four atoms, and clauses { %, uz, u3 } and {uy, %3, uq }, then the constructed § is:

(S <;. >
|
i
‘

*
!
H

First note that by (2.4.7), the ﬁcighborhood of a htcral { that is in some clause and is not colored 1 must

look like:
Ls or : 2 (2.4.8)

- ——————

;i )

z .

In the sccond case, vertex z cannot be colored any of 1, 2 or 3 in a proper sequential 3-coloring, and so
every literal that appears in some clause must be colored t or 2. In the [irst case of (2.4.8), vertex y must
be colored 3, and hence vertex z must be colored 1.

Suppose that § has been properly sequentially 3-colored and that all three literals in a clause are colored
2. Then by the above remarks about (2.4.8), the clause vertices must be partly colored as follows:

o 2 of3
! !

3{ 3f 3;
I'I 14 11
¢
| : !
L e
z v

B e A S A

etghas . o



A asut samic i

u\“& .

- EY.'T': DR

16 Approximating Sparsc Hessians Chapter 2

The only remaining vertices that could be colored 1 are z and y, and at most one of them can be colored
1. But then deleting the color 1 vertices leaves a path of length at least five (Lthe darker veruices if z, say, is
colored 1) which cannot be sequentially 2-colored. Thus every clause must have at lcast one literal colored
1. If a truth assignment is associated with the coloring by sctting atom u; true if vertex u, s colored 1,
and false otherwise, then the existence of the sequential 3-coloring of § implies that P has a satisfying truth
assigitinent.

Conversely, suppose that P has a satisfying truth assignment r. Color literal vertex [ of 5 with 1 if
7(l) = true, and with 2 otherwise. Arbitrarily exiend the coloring as in (2.4.7) to the rest of the alomic
6-cycles. Decause of the asymmetry of the clause subgraphs, there are five cases to consider in showing how
to color the clause subgraphs, depending on which subset of the literals is true. The live cases and their
colorings are:

1 1, 1« 2 1y 2, 1, 1 2o
i } I
2[ 3 24 3] 3 3 sl 34 34
: _ ) i i !
3} 2, 34 1* 2, 11 24 2| L
. t
1} 3 le 37‘ 3. 35 1l 34 3e
; - o
L . o | I i Y
2 3 1 2 3 2 3 1 3 2 2 3 1 3 2
l. 2’ 2 l 2’ l.
T !
3 3 3¢« 3 3 3*
, .
. i
2 1 1o 2 1 24
31 3} 2) 3 34 34
| 1 .| | |
1 3 2 1 3 1 3 2 3 1

The only non-trivial case to check in verifying that this coloring is a proper and sequential 3-coloring of §
is in the neighborhood of a falsc literal { that is in many clauses. By (2.4.7) and (2.4.8) it must look like:

The correctness of the coloring is casily scen. Thus the existence of a satisfying truth assignmnent for P
implies the existence of a proper scquential 3-coloring for §. 0

2.4.3. The Complexity of Finding Optimal PSimDCs

We now consider the sort of coloring a I’SimDC give rise to. By (DCP), for cach unknown il.‘j of H
cither the group containing ¢ cannot have overlap in row j, or the group containing 5 cannot have overlap in

........ P Y L S P N Ui W S P o o

e e e e e P T e o e e e ———— i v

ORI IO

-

-y

[P - 4



':'E .‘."f‘"-’:‘.".'. O
P L T CoL T

(O

Ty VTS
i ..

aT

LN

v A R T P R IR AN Ry e = A inth B Bt s it ARl J0 e bt e e

Section 2.4.3 The Complexity of Finding Optimal PSimDCs 17

row 1. Equivalently, a family of subscts of columns is not a direct cover if there is an unknown il.',' such that
there is overlap in row 3 of the group containing i, and there is overlap in row s of the group containing j.
In graph terms, the coloring is improper if there is an edge e = {4,5 } in G wherc & is colored ¢;, j is colored
cj, 1 is adjacent to a vertex p 7# 7 also colored ¢; (corresponding to overlap in row i of group ¢; containing
7), and j is adjacent to a vertex g 7 ¢ also colored ¢;.

This “excluded colored subgraph” condition is clearly cquivaleat to (DCP’), and so the next definition is
equivalent to a ’SimDC.

Direct k-Coloring: A direct k-coloring of a graph § is a function f:V — {1,2,...,k} such that [ is
a coloring in the usual sensc and there is no subgraph of G colored like:

c5 C§ €y Cq

P—O——@

where § # ¢ and 5 # p.

Proof of Theorem 2.4.3: We shall reduce 3GCP to the problem of deciding whether § has a proper direct
3-coloring. Since direct k-coloring is equivalent to finding an optimal PSimDC, the reduction will imply that
finding an optimal PSimDC is NP-Complete.

Given a graph K for 3GCP, a graph § will be constructed such that K has a 3-coloring if and only if
G has a direct 3-coloring. First note that the 4-cycle has cssentially only one proper direct 3-coloring, up to

permutation of colors:
] g2
I | (2.4.9)
3 1

By (2.4.9), again up to a permutation of colors, there is essentially only one way to color the graph:

(2.4.10)

Thus graph L forces its terminal s and ¢ to be different colors.
To construct G from K, replace every edge of K with L. Thus if

K= l l then G =

Suppose that ¢ has a proper direct 3-coloving f. By (2.4.10), if cach vertex of K is colored with the color
reccived by its identificd terminal under f, the resulting coloring must be a proper 3-coloring of K.
Converscly, supposc that there is a proper 3-coloring f of K. Then color each terminal of G with the
color of its identified vertex in K, and color each non-terminal with the complementary color of the colors of
the two terminals to which it is adjacent. This coloring is clearly a proper 3-coloring of §. Any path of four
vertices in G must enntain two terminals separated by a non-terminal. But these three vertices use all three
colors, and henee the exeluded colored subgraph of G cannot exist. Thus G has a proper dircet 3-coloring.

0

A direet, coloring is ealled a “symmetric coloring” in Coleman and Moré (1982), and they call a I’'SimDC
a “symmetrically consistent partition.” "I'hcy use these concepts to give a quite dilferent proof of Theorem
2.4.3 (see their Theorem 3.3 and the remarks following it).

OV ST PRSPPI

kB o dcd




T URTTOTN TR TR R W WO T T W o TaETT T eTRTeEASy Oy T STy T YT W Y WY YT T YR ey

18 Approximating Sparse llessians Chapter 2

2.4.4. The Complexity of Finding Optimal GSimDCs

The fact that a column can belong to more than onc group, and hence a vertex of § can receive more
than one color, makes the proof of Theorem 2.4.4 more difficult thin the proof of Theorem 2.4.3. The same
analysis of the implications of (DCP) for colorings as in the PSimDC case still holds here exeept that the
concept “vertex 1 is colored ¢;" is replaced by “color ¢, is one of vertex i’s colors.” With this insight it can be
shown that the following formal definition is equivalent to a GSimDC with k groups. let S = {1,2,...,k}.

Direct k-Multicoloring: A direct multicoloring of a graph § is a function f: V — 25 \ 8 satisfying (1)
for each edge e = (1,5} of G, f(s) N f(7) = @ (this is analogous to f being a coloring in the usual
sense) and (2) there is no subgraph of G like

—O—O0—@

with 1 % q, 5 # p, J(3) N J(g) # 0 and f(j) N f(p) # 0 (vhis is analogous to the excluded colored
subgraph condition for PSimDCs).

Proof of Theorem 2.4.4: By reduction from 3GCP. Because of the cquivalence of dircet k-multicoloring with
finding optimal GSiinDCs discussced above, it suflices to reduce 3GCP to the problem of deciding whether a
graph has a proper direct 3-multicoloring.

Given a graph K for 3GCP, a graph § will be constructed such that K has a proper 3-coloring if and only
if G has a proper dircet 3-muiticoloring. First, note that by exhaustive enumeration, up to a permutation
of colors the only way to 3-multicolor the displayed graph properly and directly is as shown:

I3 2 1
2.4.11

In particular, all vertices of subscquent graphs constructed with (2.4.11) can reccive only one color.
Given the essentially unique coloring of (2.4.11), consider how to extend the indicated partial coloring
on the following graph:

b ¢ f
YADN
L= 3 g
PI q
8 ¢

Now using “z = " as shorthand for “vertex z is colored ¢” it can bc seen that
a=2=0{b=3:=“:= l}=o¢=2:/= ,

which implies that path adef is colored 2323, an improper 3-inulticoloring, and so a must be colored 3 and
d must be colored 2. Now
b=33c=12e=3=f=2,

which implics that path adef is colored 3232, so that b must be colored 1. Thus the only way (up o a
permutation) to 3-multicolor [ properly is:

(2.4.12)




DB A0 00 0 OB S Se & dhad

e

N I=——— P i A At A R S i i

Section 2.4.5 Other Complexity Resuits i9

Note that as in (2.4.10), L forces its terminals s and ¢ to be different colors.
To derive G from K, replace every edge of K with L. Thus if

Supposc that f is a 3-multicoloring of §. By (2.4.11), f must be in fact a 3-coloring of §, that is, each
vertex of § has exactly onc color. Now color each vertex of K with the color of its identificd terminal in §.
Since the terminals of L must have different colors, K must be properly 3-colored.

Now suppose that f is a 3-coloring of K. Color the terminals of G by the colers of their identified
vertices in K. and color the non-terminals of G as indicated in (2.4.12), permuting colors appropriately. The
result is clearly an ordinary 3-coloring of G. Since each L in G is properly directly 3-multicolored, the only
possible way for this coloring of § to be an improper dircct 3-multicoloring is for a counterexample path to
have a terminal as one of its two interior vertices. But the neighborhood of a terminal vertex v in § looks

like:
2
!
34 3l .
It is now casily scen that no countcrexample path exists. Thus § can be properly directly 3-multicolored.
0

2.4.5. Other Complexity Results

Two remarks are in order about the last two proofs. First, since 3GCP is NP-Complecte even for planar
K, and since the edge replacement graphs L are themselves planar in both cases, finding optimum P’SimDCs
or GSimDCs for Hessians whose sparsity patterns correspond to planae graphs is NP-Complete. Though
this fact has little practical significance in itself, it does have an interesting corollary. It is well-known
that a planar graph on n vertices can have at most 3n — 6 = O(n) cdges (see Bondy and Murty (1976),
Corollary 9.5.2). Thua the intractability of finding optinal PSimDCs and GSimDCs is not due to requiring
algorithins to process ncarly dense Hessians. In particular, it is also NP-Complete to find optimal PSimDCs
and GSimDCs for llessians with O(n) unknowns (with density O(1/n)).

Second, the proof of Theorem 2.4.4 shows that for cvery graph § resulting from the reduction, any
GCSimDC Tor the corresponding llessian which haa only three groups must in lact be a ’SimDC. Thus the
prool of Theorem 2.4.4 also proves Theorem 2.4.3 as a corollary. llowever, since the proof of Theorem 2.4.3
given is quite <simple and is a useful warm-up for the proof of Thcorem 2.4.4, it was included despite its
technical redundancy.

The complexity of substitution mcthods can also be analyzed through graph coloring. Coleman and
Moré (1982) consider a particular subelass of substitution methods called lower-triangular substitution
methods delined originally in Powell and Toint (1979). These methods bear roughly the analogous relation
to general substitution methods as SeqNCs do to general dircct covers. Coleman and Moré show that finding
an optimal set of difference dircetions for a lower-triangular substitution method is cquivalent to a certain
kind of graph coloring that they eall triangular eoloring, and use this cquivalenee to prove the following
(sce their Theorem 7.2).

Theorem 2.4.9: Finding an optimal lower-triangular substitution sct of differcnce dircctions is NP-
Complete. -




20 Approximating Sparse lHessians Chapter 2

2.4.6. Heuristic Approaches to Direct Methods

The NP-Completeness theorems in this scction are rather discouraging, since the conventional wisdom
is that NP-Completeness is tantamount to intractability. On a more posilive nole, much work has been
done on finding near-optimal, polynomial-time, heuristic algorithms for NP-Complcte problems (see Garey
and Johnson (1979), chapter 6). '

In the present case, the most obvious heuristic approach is to reduce D2GCP wo GCP and then apply
known hcuristic results on GCP to the reduced graph. Given a graph § = (V, E), define Dy(G) (the
distance-2 eompletion of J) to be the graph on the same vertex set V, and with edges ¥ — {{{,7} ;
tand J arc distance 2 or less apart in G }. Equivalently, when the vertex-vertex adjacency matrix A of G has
a non-scro diagonal, then D,(5) 1s the graph whose adjacency matrix is A%. A third equivaleut formulation
is that D,(G) is the intersection graph (see Golumbic (19580}, Scction 1.2) of the columns of 1ts adjacency
matrix. It is easy to verify that a coloring of V is a proper distance-2 coloring of G if and only if it 15 a
proper (distance-1) coloring of D,(7) (note that this reduction also implies that DIGCP is Ni’-Complete).

If there were a “good” heunstic for GCP, it could be composed with Dj(e) to obtain a “good” heuristic
for D2GCP. Coleman and Moré (1981), Scction 4, gives a good overview of the preseut siate of the art
in GCP heuristies, which s not “good”. In fact, if c"(g) denotes the number of colors used by the best
known heuristic on graph G, and x(§) denotes the optimal number of colors nccessary Tor J (its chromatic
number), then in the worst case

H(G) _ ofoa ;

§onr1:‘vaexﬂ.ices x(g) - O(ﬂ )' (2.4.13)
where a = 1 — x—(—gl)-_—l (the best known heuristic and the bound (2.4.13) are due to Widgerson (1982); sec also
Johnson (1974) for worst casc analysis of other graph coloring heuristics). Two facts mitigate the severity
of (2.4.13). First, the range of Dy(e) does not include all graphs, and hence a better bound than (2.4.13)
can be obtained for D2GCP. Sceond, average-case results have been obtained for GCP heuristics that are
considerably better than (2.4.13).

To improve on (2.4.13) for D2GCP, consider the specific heuristic called the distance-2 sequential
algorithm (D28A). Define N(5) = {j 7 i | J is distance < 2 from 1}, the distance-2 neighborhood
of a vertex 1 in a graph. Thus, if ¢+ has color ¢ in a proper distance-2 coloring, no j € N(i) can be color c.
Then D2SA assigns color

min{c > 1| noj € N(t), j < i, is colored ¢ }
to vertex 1, s = 1,...,'V . That is, D2SA assigns vertex ¢ the smallest color not conflicting with those
already assigned. (D2SA is just the distancc-2 version of the best known GCP heuristic, the sequential
algorithm, which is called the CPR method in its applications wo approximating sparse Jacobians; see
Curtis, Powell and Reid (1974).) Let c5(§) denote the number of colors used by D2SA when applicd to §.
In order w obtain bounds on ¢9(§), two dcfinitions are required. The maximum degree of 5. A(§),

is defined as
A(g) = max|{5 | {i,5) € K(G)}I

The distance-2 chromatic number of §, x2(5), is defined as the optimal number of colors in a proper
distance-2 coloring of G, i.c.,

x2(G) = min{ k | G has a proper distance-2 coloring with k colors }.

The following theorem bour Is x2(§) and ¢5(§) in terms of A(§), and a corollary improves (2.4.13) for
D2SA:

Theorem 2.4.10: Let d = A(§). Then
d+1< x2(§) < 5(G) < & +1 (24.14)
for all graphs §.

Proof: 1.t 1 be a vertex incident Lo exactly d cdpes, and note that ¢ and its d nearest neighbors must all be
different colors in a proper distance-2 coloring; Uns proves the lower bound in (2.4.14). The sccond inequality
in (2.4.14) ia trivial.

A T

[ ]

indiennaadhiih Sodeadidedcodadedn il Al

PN S P sbmednaditedeiadil oo

3~




Section 2.4.6 Heuristic Approaches Lo Direct Methods 21

To prove the upper bound in (2.4.14), note that for any vertex ¢, |[N(s)] < d + d(d — 1) = d*. Suppose
that D2SA assigns color { to vertex s; by definition of D2SA, color [ is assigned only if at least one vertex
of each color 1,...,0 — 1 is in N(i). Thus, if i were assigned color [ > d? + 1, then |N(s)] > d® + 1 (a
contradiction). (This proof is essentially a constructive proof of Corollary 8.2.1 in Bondy and Murty (1976).)

Corollary 3.4.11: Foralln > 1,

N9 o
§on2‘vcrtice- x,(g) < l+1= 0(\,-) (24[5)

Proof: Clearly, ¢5(§) < n. Let k = x2(G). Applying the first and third inequalitics of (2.4.14) yiclds
S(G) < (k-1)t+1. (2.4.18)

Consider two cascs:
Case 1: If n < (k- 1)2 +1, then yn—1+1 < k and s0

3(9) "o n 2
e ——=yVn-1+1-24 ——— < Vn-1+1
k vn—-1+1 Vn—1+1

Case 2: Ifn> (k- 1)?+1,thenk < y/n—1+1, and s0

¢S 12
(9) (k lk) k24P << vaTT4L
(Corollary 2.4.11 is csscntially (4.6) of Colcman and Moré (1981) in the special case that the matrix is square
and symmetric). G

Graphs that attain bound (2.4.18) for a certain ordering of their vertices exist for k = 1,2,3,4. The
cascs k = 1,2 are trivial. For k = 3, consider 3 = (V3, I3) defined by

V3=zij i=123, ;=1234,5,

B3 = {2, Zit1 541} alts, s {subscripts modulo 3 and 5).

Then D2SA assigns z,, color 1 when the vertices arc ordered by s (which is optimal by (2.4.14)), and assigns
:c., color j when the vertices are ordered by 5 (which is the worst possible, by (2.4.16)). For k = 4, consider
G4 = (V4, E4) defined by
Vai=zy4 1=1,234, 5=1,...,10,

{zijszisejes} allj
Eq ={ {zijyZis1,542} alloddj } alli  (subscripts modulo 1 and 10).
{z.-,', Tit1,544 } allevenj

Then D2SA applicd to G4 also colors z,; with © when ordered by 1, and with § when ordered by j (which
are again respeclively optimal and worst possible).

Exteading this construction scems to be extremely difficult. Its exicnsion appears to be roughly equiv-
alent to solving a hard open problem in cxtremal graph theory (see Bollabas (1978), Scction 1V.1). Even if
it could be extended, the number of vertices is given by n = k((k —1)? +1), so that

‘f—(ki"-) = O(n'/3), (2.4.17)

which is a better result than (2.4.15). Thus, while (2.4.14), (2.4.15) and (2.4.18) are better results than
(2.4.13), we conjecture that (2.4.17) is also a (better) bound.

Turning from the worst case to the average case, Grimmet and McDiarmid (1975) proved the following
theorem:




v he B i Sl 2am 4
A e T )

) ot o
Al P

14 SR ARSAEA MMM - AN i

7 Lat R4 Tr‘i
. PR
Y

-
. -

LN e 20t g B Shan MR e Sh s S Eg St AT AR it S g R S e i e SR At M

22 Approximating Sparsc llessians Chapter 2

Theorem 2.4.12: Fix n vertices, and let vertices ¢ and J be independently connected by an edge with fixed
probability p, 0 < p < 1. Let ¢“(§) be the number of colors used by CPR on G, and x(J) be the optimal
number of colors (so that ¢©(§) and x(§) are random variables). Then

(4)
xg) ST

for all ¢ > 0 with probability 1 —o(1). O

Thus, on average, CPR almost never performs more than twice as badly as the optimai strategy. This
thcorem has at lcast two unsatisfactory features in this context. IMirst, sparsity patterns in practical problems
are not uniformly random as assumed in Theorem 2.4.12. Second, even if they were, the densivy of sparsity
patterns tends to be O(1/n) rather than constant with increasing n. It would be uscful o determine a
better random model for sparsity patterns, or at least to prove Theorem 2.4.12 under the assumption that
p = 0(1/n).

The weakuness of such randcin models in predicting practical perforinance is illustrated by the computa-
tional expcriments of Coleman and Moré (1982) with a version of a CPR heuristic, namuly Ci7i appiicd to
the sparsity pattern with the columns in the smallest-last ordering (sec Coleman and Muré {1981) for
details). [n their Table 4.1, column “maxr” represents a lower bound on x2(§), and column “sl” represents
¢5(G), using the smallest-last ordering. When averaged over the 30 real examples that they tested, ¢5(§)
used 14.43 colors whereas the lower bound averaged 13.6 colors. Thus the improved CPR uscd ess than
one extra color above the optimal on average, and ¢5(§) averaged at most 6.1% larger thau x.{4), « big
improvemcnt over Theorem 2.4.12,

2.5. Lower Bounding Elimination Methods

The computational experiments reported in Coleman and Moré (1982), Tables 4.1 and 8.1 are quilc
intriguing. For the 30 practical problems on which they tested various heuristics, the best NDC heuristic
used 14.43 groups on average, the best ScqDC heuristic used 11.63 groups and the best lower-triangular
substitution heuristic used 7.87 groups. This progression leads to speculation about the minimum possible
number of difference directions for a given sparsity pattern, and whether there is a polynomial algorithm to
computce it. The corresponding problem for sparse Jacobians is relatively casy; see Newsam aud Ramsdell
(1982), Theorem 3.

The ultimate lower bound on the number of difference directions necessary to approximate a given H,
call it 4(fI), is the minimum number needed by an elimination method, since these methods allow complete
frecdom in choosing the d'. This scction presents some results that give various lower bounds for 4(#), and
presents some cvidence that the best lower bound is polynomially computable. It is conjectured that the
best lower bound is tight for every H.

It must be emphasized at the outset that elimination methods are studied here not because they are
claimed to be in any sense practical. Instead the aim is to formulate a procedure whereby it can be casily
checked how far the substitution heuristics are from (/7). If these heuristies are found to be cluse to 4(Il) on
average, the practicality of the heuristics cvidently makes further work on climination incthods in practice
unappealing. Alternatively, if there is to be a significant gap between the substitution heuristics and (1),
it would be justified to investigate whether there are practically implementable climination heuristics which
out-perform the substitution hecuristics.

In this scction we shall not assume that the sparsity pattern of H has a non-zero diagonal. Also, H and
its associated graph will be referred to interchangeably, so that it will inake sense to write that I/ is bipartite.
For case of rcferral equations (2.2.1) are reproduced here, deleting the hat on /I and the dependence on z°
for simplicity:

nd' = A, 1=12,.. .,k (2.5.1)

(Recall that A! is defined as (g(z° + d') — ¢(z%))7.) Note that (2.5.1) is a sct of nk lincar cquations in the
(";") unknowns hyy,hay, ka2, haty. .. hat, Buz, . .., han. Denote the cocflicient matrix of (2.5.1) by A™*,

I

. am




A A I AN . Reel Sbal SNAEaal et Sadh aalh asiiEEAin LN i b - R g g R T I————"2 - FEd PR —————

y .

'

Section 2.5.1 A General Lower Bound on Evaluations 23 i
]

2.5.1. A General Lower Bound on Evaluations )
In the situation of interest, sparsity causes many of the unknowns to be deleted, that is, causes many of :

the columus in A™* to be deleted. llowcver, assume for the moment that H is completely dense. Then by ;
simple lincar algebra, the largest number of unknowns that can be solved for by a subsystem of cquations 3
(2.5.1) is equal to the rank of A™*. Suppose that it can be shown that the maximum rank possible for ]
A™% s, say, rox. Notc that r,, would have to be increasing in k. As sparsity comes into play, columns are p
eliminated from A™*, and its rank can only decreasc. Thus, cven for a sparse H, the maximum number ';

of unknowns that ean be solved for is still at most r,;. By this reasoning a lower bound on (/) can be
calculated as follows. Denote the number of unknowns in H by 5, and the smallest k such that r, > 9 by
k". Then at least k* evaluations arc ncecssary to approximate H. Thus we shall now focus our attention on
determining rns.

The rank of A™* is affected by thc numerical values in the d'. By assuming that the d' satisly the Haar ;.
condition, namely that every square submatrix of the matrix whose [** colurun is d' is nonsingular, the D,r
rank of A™* is maximized. (The Haar condition is implied by the assumption that the entries of the d' are
independent algebraic indeterminates. It is also implied by the assumption that the d' are perturbed from
their given values by infinitesimals, similar to the construction often used in non-degeneracy proofs.) For
example, choosing the d' as columns from a Vandermonde matrix (sce Knuth (1973), Séction 1.2.3, exercises
36 45) satisfics the Haar condition.

To determine r,x, we investigate the structurc of A™*, Labecl the s** row of the set of equations
associated with A! by “Al,” and label the column corresponding to variable h;; by “h;;." For n = 4 and
k = 2, A*? has the form 3

-y

hyy hsy hge  h3yy hys hys hiy has ha hy

al gat | a4 & d} \
i
Af | dt : d] 3 d
| .
Al ! d} d} d} d}
A3 LA d] &4 d
f . (2.5.2)
Al '; dt di d} di
ar| ! & & dq &
Al ! & 4 4 dl
|
A & 4 & a4
:_.‘ In general the cntry in row A}, column h;; of A™K iy
&£ ifg=i 1
bee & ifg=j, (2.5.3) ,
- 0 otherwise. -
:'_ Besides yiclding o lower bound on 4(H), the determination of rn: is also intercsting from another ‘
. point of vicw. Fach additional gradient evaluation yiclds n more seemingly independent linear equations.
- Because of symmetry there are only ("F') = w unknowns in a densc Hessian. Thus it might appear
i‘ that only !"—'—;—'—‘- ovaluations would suffice to approximate a dense Hessian, since the number of cquations =
o n- 1?8 > (") n. Perhaps then the number of gradient evaluations needed cven for a densc Vlessian
= could be reduced below n by a elever choice of difference dircctions. However, the next theorem shows that
.. such savings are not possible. The theorem appears to be well-known in the folklore, but we know of no
S published proof.

P . . o



Ceva s 8 e 0 4T R
I A e

O ol S ke ot A
=

.

R _RRIAS~ EERA M

B

vy

hosk. el
2

f

3

I

24 Approximating Sparsc llcssians Chapter 2

Theorem 2.5.1: The maximuin number of unknowns that can be determined by a set of gradient evaluations
along any k directions, 0 < k£ < n is given by

tak =n+{n-1)+r - r(n-k+1i)

=nk—(;)=(n;l) -("_:”). (2.5.4)

In particular, n evaluations are necessary to obtain all (";‘) unknowns in the completely dense case.
Bound (2.5.4) is sharp for some spatsity patterns.

We shall give two different proofls of Theorem 2.5.1, the first a column-oriented proof, the sccond a
row-oriented proof. The column-oriented proof is more dircct since it exhibits an explicit subset of rpx of
the unknowns which form a basis, but the row-oricnted proof is simpler.

Column-oriented Proof of Theorem 2.5.1: Partition the rows of A™* as in (2.5.2) into n row blocks of k
equations cach, the i*" row block consisting of cquations A}, A%,..., A¥. Partition the columns of A™* as
in (2.5.2) into n column blocks of 1,2,...,n unknowns cach, the 7' column block consisting of columns
hjr, hiz,. .., by, Let A:-"': denote the 1, *P submatrix of this partition. To simplify notation, definc ¢/ as
the k-vector of the j*" componcuts of the {d'}, 1.e., & = (d}, d?,...,df)T, 5 =1, ..,n. Then (2.5.2) and
{2.5.3) imply that each A;"f is completely described by

0, if+ > 3;
' 2 4 2rod
A'l.k___ (C € ,...,.C"), ifs = 3; 2.5.5
] 0,0,....c,...,0), ifi<j. (2.5.5)
e i

To complete the proof, it must be shown that rank(A™*) = r,, «. Let [ be the set of columns h,; with
k < j <1< mn,and let ¥ be the complementary set of columns. We shall show that the columns of F can
be used to climinate the eolumns of £. Note that |F| = r, &, and that cach column in /' .uvoives only ¢
withi < &

Define M 1o be the solution of the system

(" & ... &N =4 l—k+1,k+2,...,n

(! exists and is unique under the assumption of the Ilaar condition). The following computitions show that
linear combinations of the columns in F, using the { A } as multipliers, can be used to clinunate the columns
in E; since the form of the lincar combinations 15 complicated, the result is best understood by referring
to the following example (2.5.6), which is (2.5.2) re-written in the new notation with the multipliers defined
below for the case t.}i::t k=24 =hz4| and p = '}‘

22 h3y haz hss  hg hey hey hes
A NS Mg A 1
AT eany AT AT AIA] ¢ aINS AL Moa o
|
( et l c? P et \
—- —
] c! c? X e et
T —te (2.5.6)
¢ e 8 c!
{ .-
\ I | ¢t et c‘}

Let p and g satisfy k < p < q < n, 50 that kg and Ay, are typical colunns in £. To climinate column
heq from A™E, add to it A} Limes column hyj, 3 = 1,. ., k, and AN} times column A, i = 1,...,k

PR T S AP AP TP Wy Sy S PR, it e bt b A

—be

L
ol d

o

ado i

4
g

-

ottt




L 0 JU e sl ooy
.

Section 2.5.1 A General Lower Bound on Evalustions 25

J = 1,...,5 (thesc multiplicrs are the first line of X’s in (2.5.8)). From (2.5.5) and (2.5.8) the resulting
column is zero in row blocks ¢, k < i < n, ¢ # g, since no column with a non-zero coeflicient is non-sero
in these row blocks. In row block i, 1 < ¢ < k, the non-scro contributions to the resulting columnn are
E,Six.ﬂ}c' from column block i, A!A{c! from column block I, i < I < k, and !¢ from column block g,

for a total of
x'(z A+ c') =0, =12, ...k
1<k

In row block ¢, the only non-zero contribution is from column block ¢, which is

Z X,'c' +e'=0.
i<k

Thus the resultant column is zero and column Ay 4 is indeed dependent on the columns of F.

Now column k,, is eliminated using the eolumns in F. Add to it X; times column A, ;, 7 = 1,...,k,
A] times column hy,, 5 = 1,...,k, and (A\{A? + A7XY) times column hij, i = 1,...,k, j = 1,...,5 (these
multipliers are shown in the second row of X's in (2.5.8)). There is no non-zero contribution to the resultant
column in any column block i, k < ¢t < n, i # p,q. In row block 1, 1 < ¢ < k, there is a contribution of
Ti<iWAT +NIN])e! from column block £, a contribution of (AIA] + X?A{)c! from column block ¢, ¢ < ! < &k,

a contribution of A¥¢P from column block p, and a contribution of )‘fc' from column block ¢, for a total of

x:(z Ael 4 c’) + X!(Z A+ c') =0, i=12,...,k

1<k 1<k

In row block p, there is a contribution of }°, ., Afc! from column block p and a contribution of ¢¥ from
column block g for a total of
Y A+t =0

<k

In row block ¢, the only non-zero contribution is from column block ¢ and is

Y A+ =o0.
1<k

Once again the row block totals are all zero, so that column A, , is also dependent on the columns in F.

Eliminating the 1 + 2+ --- 4 (n — k) columns of E shows that rank(A™*) < r,,. To show that
rank(A™*) = r, ., delete the columns of £ from A™*, and delete the last k — 1 rows from cach row block s,
1 < k. The remaining matrix is r,, x by rs x and is block upper triangular with square, non-singular diagonal
blocks. Thus this subtiatrix of A™* is non-singular, and hence rank(A™*) > r, .

To show that thix bound is sharp, consider the sparsity pattcrn which has h;; as an unknown whenever
i< korj <k Byletting d* be the ¢*® unit vector for § = 1,2,...,k, all 7, of the unknowns can cleatly
be solved for, and thus the bound of the theorem is attained. 0

Row-oriented Proof of Theorem 2.5.1: This proof is duc to HolMinan (1982).
For each 2-subset {4,7} C {1,2,....k} dcline an nk-vector 2% with cntries indexed with the same
labels as the rows of A™* by
| & =4
z] = -d: itp= Az' (2.5.7)
0 othcrwise.
We now show that 2%/ is in the null space of the columns of A™*, ¢.e., 27 A™* = 0. Take columns h;, and
hay of A™¥ ax representative examples. By (2.5.8), column hyy is non-zero only in rows A, l=1,2,... k.
Comparing with (2.5.7), 27 and column hy, ar~ both nou-zcro only in rows AY and A{. In row Aj-, 2V is
a‘{ and column hy, is d}, and in row A{, 27 it —~d' and column hyy is d{, so that the value of the product
s By - &\d} = 0, as desired.

L -

badtbbadadutie kb

. ¥

I - PRI Arae v ¥

T PR RN




T' L - R A A A e i Y o =) - T Y WP —
3
s 4 ]
5
| . .
t . 26 Approximating Sparse llessians Chapter 2
4 F
‘Le Similarly, by (2.5.3) and (2.5.7) the only non-zero contributions to the product for column hy; are )
A from row A} A} Al A
- in 3% 4 o} ~-dy -dy
x incolumn hyy, d& d& df & .

which again totals zero, as dcsircd. ‘;
E The next claim is that the z*7 are independent. Let Z be the nk X \:) matrix with columns indexed
3 by 2-subsets of {1,2,...,k} whose {1, }'" column is z%7. It is necessary o show that Z has full rank. Set g
X d' = ¢', the I*® unit vector, so that d:, = 1if p=1, and is 0 otherwise. Choosing d' in this way could only .
3 decrease the rank of Z. Let (4,7} be a 2-subset of {1,2,...,k} and consider row A} of Z. From (2.5.7), j
[. entry {1,7 } of row A} of Z is £1, and cvery other entry is zero. Thus the submatrix of Z consisting of rows '
. A} for all subsets {3,;} is diagonal, and Z has full rank. ‘1
3
- The rank of the null space of the rows of A™* is therefore at least the nuinber of columns of Z, namcly l
E-i . %), and so the rank of A™* can be at most nk — (3). To show that rank A™* > r,,, consider the sparsity
- pattern

. cC D
DT o/

where C is a k X k dense matrix, and D is an k X (n— k) dcnse matrix. It has ro¢ unknowns. By choosing the
d' as above, all of its unknowns are clearly determined by k evaluations, and consequently the corresponding
set of cquations must have rank at least r,,. But the sct of cquations arising from such a sparsity pattern
has a cocificicnt matrix which is a submatrix of A™*, and so rank A™* = r.;.

2.5.2. A Bipartite Lower Bound on Evaluations

In considering sparsity patterns with some (or cven all) zero diagonal eniries, 1t 15 >ossible to obtain o
sharper lower bound than that of Theorcin 2.5.1, by considering bipartite sparsity patterns, €.e., sparsity
patterns whose associated graphs arc bipartite.

A sparsity pattern is bipartite if and only if it has a principal permutation so that its structure looks
like

0 C . )
(or S) (2.5.8) :
where C is an s X ¢t matrix. Such a llessian can clearly be approximated by at most min(s,¢) gradient )

evaluations, by differencing along either the first s or the last ¢ unit veclors.
When the matrix C in (2.5.8) is completely dense, call the coefficicnt matrix of the equations (2.5.1) B*. ]
As was the case with A™*, the maximum number of unknowns that can be determined by k evaluations of
a sparse bipartite Hessian is bounded above by the rank of B*. The next theorem is the bipartite analogue *
J
]

of Theorem 2.5.1.

=
o Theorem 2.5.2: The maximum number of unknowna of a sparse bipartite Ilcssian (as in (2.5.8)) that can
- - be determined from a sct of gradicnt cvaluations along any k direetions, 0 < k < min(s, t), is 1
-
re :
2 rork = (8 + t)k — k°. '1
| In particular, when the matrix C in (2.5.8) is completcly dense, min(s, t) evaluations are nceded to obtain
all st unknowns. This bound is sharp [or some sparsity patterns. :
I;. Proof: This proof uscs the same ideas as the row-oriented proof of Theorem 2.5.1. We shall show that ]
rank 3% = r . 4
Denote the first s indices of /1 by S1,82,...,8s, and the last ¢ indices by 7'1,72,...,Tt. The ]
columns of /3* are labelied with hgir, for i = 1,2,...,8 and j = 1,2,...,¢, and the rows with A", p= d

S$1,82,...,84, T, T?,...,Tt, | = 1,2,..., k. The entry in row A;,, column hg,r, of B* corresponding to




I fhavsn aene ool
a Lot

Section 2.5.3 Examples of Lower Bounding 27

(2.5.3) equals

d;  ifp=5i,
dy,  ifp=Tj, (25.9)
0 otherwise.

For every ordered pair (¢, ) with 4,5 € {1,2,...,k}, definc an nk-vector 27 indcxed as the rows of B*
by
d??q ifp= f‘iq and i < j,

g ~dp, ifp=A%, andi>j,
L5 S . :
2y = ~dy, fp=Af, andi<j, (2.5.10)

ds, i p= A% andi>j,
0 otherwisc.
Note that this definition is consistent when ¢ = ;.
The first claim is that 27 3¥ = 0, which is verified for a typical column hg,r,. Assume without loss of
generality that ¢ < j. From (2.5.9) and (2.5.10) the contributions to the product are

from row :%;.. A%,
. .. J .
in 2% d%y “‘trs
in column hgure dr, ds,

and the total product is zero, as claimed.

The sccond claim is that the z*7 are independent. As before, let Z be the nk X k? matrix whose columns
are the 277, and set d' = e5! + ¢!, s0 that d, = 1 if p = Sl or T, and is 0 otherwise. Choosing these d'
could only decrcase the rank of Z. Let 4,5 € {1,2,...,k} where 1 < j, say, and consider row A:;-’- of 7.
From (2.5.10) column 2% is +1 in row A"sj, and every other entry is zero. If ¢ > 5 consider row A%-,-, where
column 27 is -1 and all other cntries are zero. Since this subset of rows picks out a diagonal submnatrix of

7, it has full rank
Because Z has k? columns, rank B* < nk—k?. Now consider the Hessian with bipartite sparsity pattera

c D
0 E 0
CT ET 0 ’
DT o
where C is dense and k X k, P is dense and k X (t — k), and I is dense and (s — k) X k. It has k(s + t) — k?

unknowns. Al' of its unknowns can be approximated with only k evaluations by using the d' defined above.
By the same reasoning as in the proof of Theorem 2.5.1, it follows that rank B* = nk — k2. O

2.5.3. Examples of Lower Bounding

We now zve some examples of how Theorems 2.5.1 and 2.5.2 are used to calculate lower bounds for
¥(IT). First consider dense band matrices, which have an unknown in cntry 4, j if and only if |i - j| < w;
w is called the bandwidth of the matrix. For instance, when n = 5 and w = 3, the sparsity pattern looks
like

X X x 0 0
X X X X 0
X X X X X
0 X X X X
0 0 X X X

Note that such a ma rix has r,,, unknowns. It is well-known (see Coleman and Moré (1981), Theorem 5.1)
that dense band matrices can be approximated by using the difference dircetions

=
d= ) et i=12,...,w

PR PP

=3 VIO TR, =

RN '-“4'

NERIT. JUSY:

SO W

PENY w




il RERI RS

28 Approximating Sparsc Hessians Chapter 2

In fact, these d* correspond to a SeqDDC for dense band matrices. Since the number of evaluations cquals the )
smallest & for which the number of unknowns is at most ry,, by Theorem 2.5.1 these sets of directions have
the minimum possible cardinality for dense band matrices. Thus the bound of Theorcm 2.5.1 & actually
achieved for dense band matrices.

The bound of Theorem 2.5.1 can also be attained for the complete graphs without loops, which
have unknowns at cvery entry 4,7, except when ¢ = j. The insights discussed here are duc to #foffman

(1982). For instance, whea n = 3, the sparsity pattern is q
0 X X
x 0 x). (2.5.11)
X x 0

e .

It is known (see Powell and Toint (1979), cquation (5.1)) that by differencing along d' = {1,1,1), (2.5.11) can
be approximated in only one evaluation. (Approximating the matrix (2.5.11) with this d is an climination
method, and it is casy Lo sce that any substitution method inust use more than one evaluation. The matrix
(2.5.11) seems to be the only example known, a point which is further explored later in this section.)

Let II™ have the incidence matrix of the complete graph without loops on n vertices as its sparsity
pattern; it has (';) unknowns. Suppose that /™ can by optimally approximated by vy, gradient evaluations
by an as yet unknown climination method. Then Ya41 < 7n + 1 since /™! can surely be approximated
by first differcencing along d* = e™*! to get the lasu row and column of H™*! and then using the 1,
approximation scheme on the remaining unknowns, which have the same sparsity pattern as /™.

Let X\, be the lower bound on v, implied by Theorem 2.5.1, so that A\, = min{k | ('1‘) < nk - (;)}

which implies that A\, = [m—"‘,@] Since (2.5.11) is f?, by the remarks above and the fact that
A < 4n, the first few valucs of A\, and v, are

TN - - STRTTreTeTy

4
J
4
4

n 1 2 3 45 6
A 01 1 2 3 3
v 011 2 3°?

We now show that ¢ = 3. Arrange the vertices of /18 in an array like:

A

and difference along the three indicated triangles, ie. along d' = (1,1,1,0,0,0), d* = (0,1,0,1,1,0) and
5 d® = (0,0,1,0,1,1). By (2.5.11) these dircctions determine all the cdges of H® in the triangles, s.e. edges
1 12, 13, 23, 24,..., 56. The 123 triangle difference (d') gives hyg + has + by = Al in row 5. Fdiges 25 and
35 are triangle edges, and so this cquation delermines edge 15 (and by symmetry, cdges 34 and 26 are also
determined). In row 4, the 123 triangle cquation is hyy 1 hgy + b3y == A, Edge 24 is a triangle edge, and it
was shown above that edge 34 can also be determined; thus edge 14 (and so also 16 and 46) is determined.
But all the edges in I7® have now been determined, which implies that v = 3.

For n > 6 the inductive method that showed that y,4) < 75+ | can be used as long as Ap 4y = Ay + 1.
It can be shown that Mg,y 7# A, + 1 fails il and only if 'i?"—_Cz“"j——' is integral. This holds if and only if
8n + | is a perfect odd square, which happens if and only if n = (kt') for some integer k. Alter n = 6, the

ba 2 -
4
PRI SRR -

" w"v
. -

a4

next such nian = 10 = (‘IH) When n has such a value, Ay, = Apy_y = (;), which is the next lower such
n. Such integers arc known as triangular numbers for the reason that when n is triangular, n points can
be arranged in a Lriangular array similar w the configuration for n = 6 above.

Now it is inductivcly easy Lo show that when n == {*3'), \p = o = (3) by using the (§) triangular

Rl A ot M8 & i O et er
. Y . .

DO 3 rg"r‘v_.




T T i Anni S A S e b Nl

Scetion 2.5.3 Examplcs of Lower Dounding 29
:a differences
R
- A
. .
A A
L] L] *
L] [ ] [ ] L ]
A A A A
L] [ . L] L ] [ ]
!
[. The induction hypothesis shows that every edge of H™ is determined by these diflerences except for those
- involving a vertex of the largest triangle and a point on the opposite edge. But these can be dctermined
\ from the other cdges by a process similar to that described above for n = 6. Thus the triangular numbers

are doubly triangular in this context.

. For values of n that are not triangular numbers, both A\, and «, increase by t.)ne. Thus for all n,
Ei An = n, and so once again the implicil bound of Theorem 2.5.1 is attained.

For the next cxample, consider the sparsity pattern

X
X
X , (2.5.12)

© X XX
X X X

XXX o

X X
X X
X X

for which n = 6 and n = 9. Thcorem 2.5.1 says that two cvaluations can determine as many as 6-2 — (:) =
11 unknowns, and thus gives a lowcr bound of only 2. But since (2.5.12) is also a (complete) bipartite graph
with s = ¢t -= 3, I'hcorem 2.5.2 gives a better lower bound of 3 (and also says that 3 cvaluations arc optimal.
Iixample (2.5.12) illustrates that Theorem 2.5.2 can imply a higncr bound than Theorem 2.5.1.

There is 1 way to sharpen further the bounds of Theorems £.5.1 and 2.5.2. Considnr the aparsity pattern

(2.5.13)

o X X X
oX X X
o X XX
Xooo

with n = 4 and n = 7. When k = 2, Theorem 2.5.1 concludes that as many as 7 unknowns could be
calculated. But in approximating (2.5.13), the leading 3 X 3 submatrix must be approximated as well, and
Theorem 2.5.1 implies that k = 3 evaluations are neccessary to approximate a dense 3 X 3 matrix. Thus a
better bound can be obtained in some cases from a submatrix than from the whole matrix.

- For any (non-empty) § C {1,2,...,n} the bound of Theorem 2.5.1 can be computed based on the
b submatrix of // whose rows and columns are in S. The largeat lower bound so computed is then a poasibly
;. sharper lower bound for 4(I7) than the bound based on the whole matrix.

t' - If a submatrix of I corresponds to a bipartite graph, a lower bound should be computed using the
:? : sharper Theorem 2.5.2. Unfortunately, sometimes Theorem 2.5.2 can give a sharper result even when a
L. submatrix docs not correspond to a bipartite graph. Consider the sparsity pattern

h

b

e

PURP IR N GPN G PNy UP U W P PRI LI W PO, PO P S Y

PP P

T

Tl




30 Appeoximating Sparse Hessians Chapter 2
x 0 0 0 0 0 X X X X X X \
0 X 0 0 0 0 X X X X X X
0 0 X 0 0 0 X X X X X X
0 0 0 X 0 0 X X X X X X
0 0 0 0 X 0 X X X X X X
0 0 0 0 0 X X X X X X X
X X X X X x X 0 0 0 0 of (25.14)
X X X X X X 0 x 0 0 0 0
X X X X X X 0 0 x 0 0 o0
X X X X X X 0 0 0 x 0 o0
X X X X X x 0 0 0 0 x o0
\Xx X X X X X 0 0 0 0 0 xJ

with n == 12 and n = 48. Since 5- 12 — (}) = 50 > 48, Theorein 2.5.1 gives a best lower bound of k£ = 5
(even if checked for all submatrices). But by deleting the diagonal entries, the matrix becomes bipartite and
Theorem 2.5.2 gives the better lower bound of £ = 6.

Thus, to achieve the best lower bound derivable froni: Theorems 2.5.1 and 2.5.2, it is niccessary o consider
not jusy the vertex-induced subgraphs of I/ {which corrcspond to submatrices of £), but all the cdge-induced
subgraphs as well. The cdge-induced submatrices must be checked for bipartiteness o sce whether Theorem
2.5.2 can give a higher bound.

2.5.4. Computing Lower Bounds in Theory

Next we consider how to compute the bounds implicit in Theorems 2.5.1 and 2.5.2. [n princ.ple, as was
shown in the proofs of Theorem 2.5.1, y({[) can be computed by the following algorithmn.

Algorithm
0. Set k= 1.

1. Construct the matrix A™¥*, using, say, columans of a Vandermonde matrix for the d'.

2. Delete the columns of A™* corresponding to cntries of H known to be zcro, yiclding At
3. Calculate ra.nk(zn'k) = tx. If tx > 7, then 4(H) = k. Stop.

4. Otherwise, sct k +— k + 1 and go to 1.

With infinite-precision arithmetic, Algorithm 4 is a polynomial algorithn, since Step 3 can be performed
at most n tiines on a matrix whose size is bounded by n2. Calculating rank is an O(size®) operation, yiclding
a total time bound of O(n?). Ilowever in practice, with finite-precision arithmetic, the deaisiyn i Step 3 is
not clear cut. Calculating the rank of any numcrical matrix is extremely difficult in practice {sce Peters and
Wilkinson (1970)), so much so that the conventional wisdom among numerical analysis s that numerical
rank cannot be preciscly defined. Even if it could be, the well-known classes of matrices gnaranteed to satisfy
the Haar condition (such as the Vandermonde matrices) are notoriously ill-conditioned and difficult to work
with (sce Newsam and Ramsdell (1981), p. 13 for similar concerns in the context of Jacobian approximation).
Thus Algorithm 4 would not be practical even if rank were caleulable.

A more practical implementation of Algorithm 4 is to use randomly generated vectors for the d' in
Step 1. With probability nearly 1, a random matrix salisflics the llaar condition, aad in practice A s
usually well enough conditioned that Step 3 can be carried out satisfactorily in finite-precision arithmetic.
By repeating the randomized Algorithm «y several times using different random d', a high degrcee of confidence
in the anawer can be obtained. Indecd just such an algorithm has been implemented (in order to scarch for
a countcrexample o a conjecture that comes later), and it has performed satisfactorily on small problems
with n < 12.

The randomized Algorithim 4 has some drawbacks. Firat, it becomnes increasingly slow to compute the
LU -Tactorization that is used to calculale the rank of the nk X 5 matrices. Second, once has less and less faith
in the computed answer as n gets large, due to the usual numerical difliculties in computing rank mentioned
above, coupled with a sinaller degree of confidence that the random malrices satisly the ilaar condition
to the wlerance of the computer. Third, the whole procedure is esthetically unsatisfying to mathematical

1".....,.

P




A A

Section 2.5.5 Computing lLower Bounds in Practice 3

sensibilities hecause the nummber 4(/7) is an intrinsic characteristic of If, and calculating ranks of random '
matrices seems to be a roundabout way of computing it. A purely combinatorial algorithin would seem much
more appropriate.

Unfortunately such an algorithm does not now exist. However, we make the following two conjectures:

Conjecture 2.5.83: y(H) is equal to the largest lower bound computable via subgraphs using Theorems
2.5.1 and 2.5.2.

Conjecture 2.5.4: There is a purely combinatorial polynomial algorithin for computing (/) that is fast
in practice.

The evidence for Conjecture 2.5.3 is that y(H) has been computed for many small H (n < 12) by using
the randomized Algorithm «, and no countcrexample has been found. Also, the conjecture is true for all the
examples discussed above. That is, every I/ tried so far does have some subgraph K such that y(H) is the
smallest k for which the bound of cither Theorem 2.5.1 or 2.5.2 is satisfied on K.

The cvidence for Conjecture 2.5.4 is stronger than a lack of counterexamples. There already exists an
almost practically effective way to compute 4{Il), namely the randomized version of Algorithm . The fact
that 4(/7) can be casily computed for many H appcars to be inconsistent with any supposition that finding
¥(IT) is NP>-Complete. A striking characteristic of most NI>-Complete problems is that they are no easier in
practice than they are in theory. Thus the existence of the randomized Algorithm v secms strong evidence
for Conjecture 2.5.4.

2.5.5. Computing Lower Bounds in Practice

If Conjectrires 2.5.3 and 2.5.4 are both true, it would follow that there is a {practical) combinatorial
polynomia! alzorithm for computing A1), the largest lower bound implied by "Theorems 2.5.1 and 2.5.2 over
all subgraphs of /7. Some prcliminary work is presented next on how to compute A H), which can also be
taken as evidence for both conjectures.

For simplicity, assume at first that IT is bipartite; then all of its edge-induced subgraphs are also
bipartite, so that only the bound of Theorem 2.5.2 is relevant. Let I be any subset of the unknowns of II
(or of the cdges of its graph), and let N(F) = {i ! h;; € E, some j }. For example, if

I =

XX Xoo
XX Xoo
cooX X
oo XX
ceoaoX X

.y
RN

and F = {hm, h||,’l|5 }, then N(E) = {1,3, 4,5}
o | In the subgraph of /7 determined by FE, Theorem 2.5.2 says that k evaluations might suffice for the |E|
unknowns if /' < N(E)! -k ~ k?. Thus the largest lower bound over all £ must be

min{k | |E] < |N(E)!- k- k* for all E}. (2.5.15)

: To sce why, denote the minimising k in (2.5.15) by k°, and let 1£° be an cdge subsct that blocks k° from
P being smaller. 9o that k* - min{k ! [E*] < [N(E") -k - k?}. But this is the definition of the lower
r" bound on ~(/!) derivable from /£, so that k* is a lower bound on (/). Yor any other cdge subsct F,
BV < IN(EY k° (k") which implics that the lower bound derivable from £ is at most k°.
Equation {2.5 15) is reminiscent of Phillip Hall-type theorcms (sce, c.g., Welsh (1976), pp. 97 98). Let
B be a bipartite graph with left vertices § and right vertices T. For U C 8, let I'(U) = {1 € T |
{a,5} is an cdge of B for some s € 1/ '}, The Phillip Hall theorem of interest is

4 Theorem 2.5.5: let rn - 'S'and d > 0. Then I3 has a matehing of size m — d if and only if
-«
L W) < W) +d, foral U/ C 8. (2.5.18)

- (See Welsh (1978), Theorem 7.4.) O




Approximating Sparse Hessians Chapter 2

Theorem 2.5.5 is interesting because it provides a polynomial algorithm that simultancously verifics an
expoacatial aumber of inequalities. That is, veeilying the 2™ incqualities in (2.5.16) s equivalent by Theorem
2.5.5 o finding out whether B has a matching of size at least m — d; since good polynomial algorithms cxist
for linding a maximuin cardinality matching (sce Lawler (1976), Chapter 5), the cquivalence implics that
there is a polynomial algorithm for verifying the incqualities (2.5.16).

It is simple o generalise Theorem 2.5.5 shightly when the incqualities to be verified are

Ul < iNU). k+d forallU C §. (2.5.17)

Recali that the maximuim cardinality matching problem on B is equivalent to a network flow problein N as
follows (see Lawler (1976), Scction 5.2). Direct cach S, T edge from § to T with capacity oo, add an arc
(8, 1) with capacity | for all : € S, and add an arc (7,¢) with capacily 1 for all j € T. Then N has a (low of
value m -~ d if and only if B has a inatching of size m — d.

Now change the capacity of cach (5,¢) arc from 1 to & (which corresponds to “multiplying” cach T
vertex of B by k). Theorem 2.5.5 becomes

Theorem 2.5.6: The 2™ inequalities (2.5.17) are true if and only if N has a flow of value m —d. [

Since network flow also has a polynomial algorithm (see Lawler (1976), Chapter 4), there is a fast way
of verifying (2.5.17) as well.
Now suppose that the 2™ — 1 incqualities

W] <IFNU)-k d forall@s£UC S (2.5.18)

could also be verified in polynomial time for any d > 0. Consider the bipartite graph B which has § =
{unknownsof 1}, T = {1,2,...,n} and edge { h,,,!} when ! =i or j. Then for £ C &, I'(L) = N(E).
Henee, by setting d = &? and iterating the hypothetical procedure for k = n,n — 1,..., the minimizing k
in (2.5.15) could be determined. This line of reasoning makes it intercsting to find a polynomial algorithm
to solve (2.5.18) (an apparently minor variant of (2.5.17)).

Such an algorithm has been provided by Saks and Kahn (1983). Consider the network N of Thcorem
2.5.6; ict N; denote N with the capacity of the single are (s, 1) changed from 1 to 0o, By the usual argument,
a minimum cut for N; must be of the form {3} U U U I'(U) for some U C S. Since the capacity of (s,1) is
0o, s must be in U. Thus the minimum cut, and so the maximum flow, for N; solves the problem

' mins m (U] +k-[T(V) (2.5.19)

€U g

Solve cach of the maximum flow/miuimum cut problems N; and let U* be a minimizer in {2.5.19) for an N;
with the smallest capacity minimum cut. Now, if (2.5.18) is satisfied, then certainly m + d < [I(U°)] -k —
|U°] + m = smallest value of any N; flow. Conversely, suppose that

m+d<|FU°) k- |U"|+m. (2.5.20)

By definition of {/°, the right-hand side of (2.5.20) is less than or equal to [I(U)} -k = {U| + m for ali U C 8,
and 3o (2.5.18) is satisfied.

The problem of verifying the 2™ - 1 inequalities in (2.5.18) has been reduced to solving m nctwork
flow problems, and so can be done in polynomial time. Let V be the set of nodes of N,, and & the
sct of its ares. Then the complexity of solving one N, maximum flow problem is O(,V.F|log|V|) (see
Papadimitriou and Sticglitz (1982), Chapter 9). Since verifying (2.5.18) involves m problems, it is of
complexity O(m|V || I5| log]V|).

For the problemn of intereat, [S]=m =g, |V, = |SUT| == n + 5, and \E} = n + 3n. The procedure
iterates at most g times, for a tolal ume complexity of O(n(n + 5)?log(n + 1)). When n = O(n), the
complexity reduces to O(n® log n).

To re-capitulate, we have shown that when H is bipartite, the following algorithim exactly calculates

M)

g

- v

it




Section 2.5.6 A Bound for ligher-Order Derivatives 33

Algorithm B:
0. Set k= |%]-1.
1. For 1 = each unknown in H do
Construct nctwork N;.
Solve maximum How on N;, with value v;.
2. Let v* = min; v;.
3.Ifn+k?<v setke k-1,gotol.
4. Else answer \(II) = k + 1.

The existence of Algorithm B is certainly consistent with the truth of Conjecturcs 2.5.3 and 2.5.4.
When II is not bipartite, it is casy to see that the best bound given by Theorem 2.5.1 can be calculated by
replacing Step 3 of Algorithm B by “If n + ('2‘) < v'...,” since the only difference between the conclusions
of Theorems 2.5.1 and 2.5.2 is the substitution of (;) for k* Unfortunately, as example (2.5.14) shows, the
answer resulting from the modified Algorithm B is not in gencral equal to A(/]), even when all the diagonal
elements of /I arc unknowns. Resolving this difficulty is an areca for more research.

2.5.6. A Bound for Higher-Order Derivatives

A question that naturally arises is how this research extends to approximating higher-order derivatives.
Such an extension is not a practica! concern, for storing and working with a moderately large order-3
derivative array, even if it is sparse, would be prohibitively expensive. Nevertheless, a mathematical sense
of completion can make such cxtensions intcresting. The urge to gencralize has been resisted in most of
the rest of this thesis (except perhaps in the first proof of Theorem 2.4.1), but we shall yicld to it here and
indicate how to generalize Theorem 2.5.1 to higher-order derivatives.

Let us review the delinition of a higher-order derivative. For a function F:R™ — R, its derivative of
nrder m, V™' F, evaluated at point 20, is the n X n X - -+ X n (m times) array of numbers

O™ F(z°
VTF(z%) = (hiyipoin)s  Where hy iy i = mr(—‘,),z
By symmetry of repcated derivatives, by, ;... i = Ba(i,).#(i3),...2(im) fOf any m-permutation x. Thus, the
number of potentially different entries in V™ F(z%) is the cardinality of the set Tngm = {(1,82,...,8m) | 1 <
1y 42 £ -+ < 1y < n}, the sct of m-selections from {1,2,...,n} (they arc selections instead of subsels
since they ean have repeated cntries).

Let Piy = {(8y,42,...,8) ' 1 <4 < i3 < --- < § < k}, the set of [-subsets of {1,2,...,k}, so that
Pl = (‘,‘) Then the bijection hetween elements of Iy, and Ppym—1,m given by

(il,iz,...,im)e Inm « (t'l,t.z-f- 1,...,im+m— I)G Pn+m—l,m

(see Knuth (1973), Scction 1.2.6, excrcise 60) shows that [Inm| = (**77"), so that the number of different
unknowns in a dense V™ (%) is also ("*’,':"') (a special casc is that when m = 2, the number of unknowns
in a dense Hessian is (";'), as already discussed).

Let 1I™ — V™ F(20). In approximating ™ by finite-differencing V™' F along directions d', the
approximation 1" satisfics the lincar cquations

(2.5.21)

LT7 PR fi

3 i, = (TP ) - T FE))

1 <4, <n | <Il<k Bach d would appear to give rise to n™~"' cquations in (2.5.21), namcly one
J > > pPpec g

for cach different iy,6y,...,1,,, but since V™~ LF is also symmetric, these cquations are identical under

permutation of 13,13, .., 6m,. Thus it can be assumed without loss of generality that 1s < iy < -+ < 4y, %0

that cach d' actually gives rise o fnm—1 cquations in (2.5.21). It follows that (2.5.21) is a sct of k(*:™,?)

equations in ("7 ') unknowns.

e~

]

aaa &

-

I

2

DR WL RK)

P

e ‘LL)

eIy |




34 Approximating Sparse Hessians Chapter 2

The usual approximation method would again choose d‘ = ¢'. It is casy to sce that k cvaluations of

\"AclY wn.h these d! (directly) determines every catry of 1™ whose smallest subsceipt s at mosy k. If an
entry of fI™ has all its subscripts grecater than k, then its subscripts are cffectively an m-selection from the
set {k+1,k+2,...,n} of cardinality n—k. Thus I, _«,m. = (“'“ e l) out of the (** " ") totai unknowns
arc not determmed by the k cvaluations along the unit veetors, so that ("*7*~') — (*~*1™ 1) Lnknowns
are determined. The proof of Theorem 2.5.1 leads to the conjecturc that at most this number of unknowns
can be determined by general d' as well, and indced the following theorem is the proper gencralization of
Theorem 2.5.1.

Theorem 2.5.8: When approximating V™F (possibly with sparsity conditions) by finite-differencing
V™= F along directions d!,d?, ..., d*, at most

n+m ~1 n—k+m-1
Tamk = m - m

unknowns can be detcrmined by the k evaluations of V™! F.
In particular, n evaluations are neccssary to approximate V™ F when it is dense. This bound is tight
for some sparsity patterns.

Sketch of Proof: This proof is very much in the spirit of the row-oricnted proof of Theorem 2.5.1.
Let A™™* be the k(":'n':rz) X ("+,':"") coeflicient matrix of cquations (2.5.21). As was the case in

Theorem 2.5.1, it suffices to show that rank A™™* = r,,., when A ™ is completely dense. A key observation
in the proof is the identity

(n+:—l)_(n—k:—nm—l) By l),(n+m :- ‘)(’:) (2.5.22)

=1

of which (2.5.4) is a specialization. This identit.y is easy to prove by induction.

A scquence of matrices A™* = Z' Z% ... /™ can be defined with entries from the d’, where Z° is
"*,'::::" ')(':) X (?:—':'l+|')(a—1) Notc that the row size of Z' is the absolute value of the i*P term of (2.5. 22),

and thal the column size of Z* equals the row sizc of Z2*~!. The property that the 7' are constructed to
satisfy is that Z2'Z"~' = 0,1 = 2,3,...,m, so that each row of Z* is in the null space of the columnns of
Zi I

Now set d' = ¢!, which can only decrease the rank of cach Z°. As the basc of an induction, using thesc
particular d' it can bc shown that Z™ has full row rank, namcly (m) Thus, since Z™ ! has n(m_ ,) rows

and Z™ is in its null space, rank Z™~! < n(,.* ) - (%). But with these d' a square, diagonal submatrix

of 2™~ of mze n(,,*,) — (%) can be found, and hence rank 2™ = n(, ¥ ) - (%), the last two terms of
(2.5.22).
At the general step it is known thatrank Z2°+! = - Y. (=1 ("* =7 ")(%) and Z° has ("*2i)()
rows, so that
L -1\[k
1 < — 1) n+m- ) . 5.
rank Z :-Z.( 1) ( e ) (2.5.23)

But then there is a aquare submatrix of Z* of size (2.5.23) which is diagonal with this choice of df, hence
(2.5.23) is really an equality, and the induction can proceed. The induction terminates at s = 1 which yields

rank 7' = rank A = _ 3( 1)'(" me : - ')(':)

R

It would be mathematically interesting to obtain a similar genceralization of Theorem 2.5.2.

as desired. [

L

FRPUPPTRE.

| PN

.

A a g L_L.A__EAJl‘ PAVEPERERY \

-4




Lan g an angn

| acne

Lok A ad aa
NS At

L B e st o W
N !
b P
. SN

AJBCROATC) A LU A ﬂ
. . . -

Eh ool et

PR
R T T

'

@ '

T

Section 2.6 Reflections on Sparse [lessians 35

2.6. Reflections on Sparse Hessians

We have investigated the approximation of sparse Hessians, largely from the poinl of view of com-
putational complexity. Scclions 2.2 and 2.3 showed that various mcthods that have been proposed for
approximating sparse flessian can be classified in a helpful way. ‘

Using this classification, Section 2.4 showed that finding an optimal approximation schemc for cach
subclass of dircet methods is an NP-Complete problem. The theorem of Coleman and Moré (1982), which
is quoted as Theorem 2.4.9, gives a similar NP-Completeuess result for a subclass of substitution methods.
Their theorem suggests that as with direct methods, all subclasses of substitution methods arec NP-Complete.
Fully investigating the complexity of substitution methods is a useful topic for future research.

By contrast, the results of Section 2.5 tend to support the view that determining the minimum number
of gradient cvaluations necded by a given sparsity pattern for an elimination method can be computed
by a polynomial algorithm (however, computing a sct of numerically “reasonable” difference directions that
realizes the minimum may be much harder). Thus in passing through the spectrum of approximation methods
from direct methods (simple, stable, large number of evaluations) to climination methods (complicated,
possibly unstable, smallest number of evaluations), a boundary between NP-Completeness and polynomial
algorithms scetns to be crossed between the substitution methods and the climination mcthods. Clearly more
work necds to be done to establish the truth or falsity of Conjectures 2.5.3 and 2.5.4.

An intriguing additional reason to study Conjectures 2.5.3 and 2.5.4 is that very few cxamples are
known of sparse llessians where an optimal climination method uses strictly fewer gradient evaluations
than an optimal substitution mcthod. The standard {and apparently, essentially the only) example of this
phenomenon is (2.5.11) (though it is likely that all complete graphs without loops also fall in this class).
It is not clear whether such examples are inherently rare, or whether there has been insufficient work in
constructing them. [f such examples arc rare, then establishing the truth or falsity of Conjectures 2.5.3
and 2.5.4 is even more important since the ability to compute y(If) for a substitution mcthod would be a
valuable guide for a substitution heuristic. On the other hand, if such examples are common, being able to
compute (/) might aid in searching for them.

Though practicalities have been mentioned along the way, our emphasis has been on complexity rather
than computation. Thus the reader maty still be uncertain as to what method to choose to approximate a
sparsc Hessian, The direct methods reported in Coleman and Moré (1982) are simple, nuincrically stable,
and very fast (both in finding the groups and in approximating I given the groups), and cmpirically give
fairly good results (see their Table 4.1). Substitution mcthods are inherently less numerically stable than
direct methods, though Powell and Toint (1979) show that the accumulated crror in a substitution method
cannot grow too fast. The triangular substitution methods in Coleman and Moré (1982) are almost as
simple as their direct methods, reasonably numerically stable, fast in finding the groups, somewhat slower
in solving for H given the groups, but cmpirically usc significautly fewer gradient evaluations than their
direet heuristies (compare their Tables 4.1 and 8.1). To our knowledge, no general elimination methods have
been proposed. Except in special cases, such as the complete graphs without loops mentioned in Section 2.5
(which cffectively use a substitution method except for solving systems like (2.5.11)), elimination methods
are expected to have such potentially unreliable numerical properties as to make them practically useless.
At this point, the triangular substitution heuristics in Coleman and Moré (1982) seem to be the best for
general usage.

This chaptler has resolved many of the previously open questions about approximating sparse Hessians.
However. much work remains before the subject is completely understood.

L e ———— . S Y Sy W TN . DA G G >

MadiP s e St bk e n A Y iy PAARDA S s et Mt Baan Bieds-Iaear) T T PUR bom oy O JRSha Suim Aol e




. e~ N T oy Y Y T TR T R T YT - o e - v W I A A Ml S S A A Aniie Rt R § P et

Chapter 3

Making Sparse Matrices Sparser

3.1. Introduction to Making Matrices Sparser

Many large-scale constrained optimization problems are of the form

min F(z)
s.t. Az=0» (3.1.1)
1<z<u,

where [, v, z € R™, F:R™ — R and A is an m X n matrix. This is a linearly constrained problem with
bounded variables. Usually m is less than n, and hence there are many z that satisly Az = b.

Quite large problems of the form (3.1.1) have been solved, some with m > 10,000, n > 50,000 (see,
e.g., Hillier and Licberman (1974), pp. 180-181). If such an A were dense, then storing and accessing its
entries would cause an optimization program to be painfully slow.

The reason that very large problems can be solved in practice is that they arc sparse; most of the
entrics of A are zero. A rule of thumb that is used in some applications is that an average column of A
usually has lcss than ten non-seros in it, often less than five non-zcros. A matrix with the above dimensions
would bhe expected to have only about 500,000 non-scros, a decrease of three orders of magnitude from the
number of possible entries.

Define the density of a sparse matrix as the fraction of entries of A that are non-zero. Then when
n = O(m), the number of possible entrics of real-lifc matrices is O(m?) whereas their number of non-ueros
is only O(n), so that their density is O(1/m).

To take ndvantage of sparsity it is necessary to store ¢ and j along with a;;, thus incurring a atorage
overhead, but a relatively small one (matrix indices can often be storcd in many fewer bits than numerical
valucs). The necessity of manipulating the indices makes some simple sparse matrix tasks quite complicated.
For example, it can be non-trivial to transpose a sparse matrix in some representations (sec Guslavson
(1973)). Programs for processing sparsc matrices are thercfore much longer, more complicated and harder
to develop than for their dense counterparts.

Nevertheless the immense savings in exccution time over comparabic dense algorithms warrants taking
account of sparsity By cxploiting sparsity, much larger problems have been solved much faster than they
have would been otherwise. Indeed, the largest problems could not effectively be solved at all without sparse
matrix techniques.

Sparse mcthods are not faster than dense methods simply because there arc many fewer numbers to
keep track of. There is another, more subtle phenomenon working in favor of sparsity. Consider solving the
aystem of linear equations

Bz=0b (3.1.2)

when B is m X m and non-singular. The usual dense Gaussian elimination procedurc takes O(m?) time.
Since the number of entrics of /7 is m?, the execution time is superlinear in the amount of data.

Now consider solving the same system when DB is sparse, assuming O(m) non-zcros. It has been
empirically observed that a well-implemented sparse Gawussian climination technigue takes only O(m) time
(see Duff (1977), Table 3). This observaticn is true partly becausc even real problems without apparent
structure scem to have some hidden structure, though in a way that has resisted quantification. It seems
doubtlul that sueh good results would be obtained on matrices whose non-zero entries were randomly located.
Thus in a typieal sparse situalion, lincar cquations can be solved in time linear in Lhe amount of data.
Sinee solving linear cquations 1w a ubiquitous operation in optimisation, such an improvement represents a
significant speed-up compared to the dense case.




Section 3.1.1 Relationship Lo Bipartite Matching 37

Since the time required to perform many kinds of sparsec matrix operations is proportional to the number
of non-zeros in A, trying to make the given sparse lincar constratuts Az = b cven sparser scems to be a
natural problemn to solve. That is, instead of accepting the degree of sparsity i the modei «s formulated,
it might help to increase the degree of sparsity (decrease the density). More succinetly, since sparsity is a
virtue, sparser should be better.

An obvious application of such an effort is that in solving (3.1.1), opumization routines solve many

) ) .
.J!L,LLkAAL.L;! Lo -

systems of lincar equations like (3.1.2), where I3 varies over various submatrices of A (see Gul, Murray and —.4
Wright (1981), Chapter 5). Thus, il A were sparser, the various B's would (on average) be sparscr. Since 3
exccution vme depends on number of non-zeros, Lthe speed of optimization would incecase. )
A less obvious application is when the linear consiraints of (3.1.1) are replaced by non-linear constraints
o(z) = 0, where ¢ is a function from R" to R™. Such non-lincarly constrained problems arc often sparse in :
the scnse that the Jacobian of ¢(z) is a sparsc matrix, and its sparsity pattern (zero/non-ucro structure) is _4
independent of z. An algorithin that is able to make a matrix sparser using culy its sparsity pattern couid '1
therefore be useful for non-lincar problems.
These possible applications icad to considering the 1
Sparsity Problem (SP): Given )
Az = b, (3.1.3) 1
find an equivalent system X . ¥
Az =b (3-1.4) |
which is as sparse as possible, where equivalent means that the same sct of z’s satisfly both systems.
From simplc lincar algebra, (3.1.3) and (3.1.1) arc equivalent if and only if A = TA and b — Tb for somne 1
m X m non-singular matrix T. Thus, solving SP is equivalent o finding a T that minimizes the number of "]
non-seros in T A. This chapter explores some ways W solve SP in theory and in practice.
3.1.1. Relationship to Bipartite Matching L
The methods that we shall use to solve SP involve bipartite matching theory. Therc is a simple 1
4

correspondence between bipartite graphs and sparsity patterns of rectangular matrices. When we write
a sparsity patiern a zero is represented by “0” or a blank, and a non-zero by “X". Givea the sparse
matrix A, define the bipartite graph B by sctting the left nodes of 8 = {rows of A}, the sight nodes of
B = { columns of A}, and the edges of B = {{3,5}, ai; 7 0}. For example, if

N IR

O
X X 0 ®
A—(o X X)' then 8 = o g

This correspondcnce allows us refer to sparsity patterns and bipartite graphs interchangeably. In this chapter
sparsity patterns will be displayed as matrices, but the language of bipartite graphs will be uscd to describe
them.

A iabset P of the non-zcros of A such that no two elements of P lic in the same row or column is .4
classically known as a partial transversal (sce Welsh (1976), Scction 7.1). A partial transversal corresponds
to a (not neccssarily maximum) matching (sec, e.g., Lawler (1976), Chapter 5) in a bipartite graph (i.c.,
a subset of edges with no common vertices). For example, the circled transversal corresponds to the heavy
matching in the bipartite graph 8:

® X 0 00
A=(0 ® o), B = @ eapin® 91
X 0 & 3 )

We shall favor the term “matching” even though it is historically inappropriate for matrices.

A matching in A is called row-perfect if all rows of A are in the matching; column-perfect is defined
similarly. A matching is perfeet il it is both row- and column-perfect. A maximum matching is one
with a maximum number of non-zcros. I 2 C {1,2,...,m} and ¢ C {1,2,...,n} then Ag.: denotes the
submatrix of A indexed by rows in I and columns in C. let £(A) = {non-zcros of A}, and ket M(Agc) be
the size of a inaximuin matching in Apc; M(Ap(:) is soinctimes called the term rank of Agc {sce Ryser
(1963), Chapter 5). An important property of maximum matchings that will be used repeatedly is stated in
the following proposition. k

PP Yy %o




. . o i g - W T TN P § v TR —— ———————— T ——— -

38 Making Sparse Matrices Sparser Chapter 3

Proposition 8.1.1: If M is a maximum matching in A, the rows and columns of A can be permuted so
that A can be partitioned as
a=(% 9, (3.1.5)

D E

where M C £(C)U £(D); M N £(C) is column-perfect for C and is row-perfect for C if and only if M is
row-perfect; and MNE(F) is row-perfect for E and is column-perfect for I if and only if M is column-perfect.

0

This proposition follows from the Konig-Egervary Theorem (see Ryser (1963), Theorem 5.1). As an
example of the proposition, consider

|
|
i
t
X . ® X
X |x ® x

with the circled maximum matching. The matching is not column-perfect for E, nor for A, but it is row-
perfect for both € and A.

3.1.2. Possible Approaches to Increasing Sparsity

Two possible assumptions can be made in dealing with sparse matrix problems like SP. The first is that
almost all the information about A is contained in its sparsity pattern, and almost none is embodied in the
actual values of the non-zeros. This assumption is used by the graph models of the location of fill-in during
spirse Gaussian elimination which occur in theorems about the complexity of minimizing fill-in (see Problem
GTA46! in Garey and Johnson (1979)).

The complemcntary assumption is that the non-zero values have a structure that can be exploited in
solving S, This assuinption would lcad to an algorithm that would try to discover numerical relations among
the non-zeros in an cffort to increasc sparsity. An example of this assumption as used for a differeni problem
is the work of Bixby and Cunningham (1983) on solving linear programs faster by finding large embedded
networks,

We shall use the fisst approach in this chapter. Indeced, in the application to non-lincar constraints
discussed above, no other approach is possible since there is a fixed sparsity pattern with changing numeric
entries.

3.1.3. Overview of this Chapter

Secction 3.2 opens with a discussion of why SP is difficult without making a generality assumption. A
rigorous definition of the assumption used in the rest of the chapter is then given, and is applied to derive
polynowial algorithms to solve SP. With the assunption, a polynomial algorithm is constructed that solves
an 'mportant subproblem of SP, the One Row Sparsity P’roblem. This algorithm is at the heart of all the
other algorithms.

'n Scction 3.3, the One Row Algorithm of Scction 3.2 is used to derive two polynomial algorithms
for solving SP. One of the algorithms is important for theoretical reasons, and the other can be modilied
into 2 praclically implementable algorithm. Some theorctical consequences of these algorithms for Dulmage-
Mendelsohn decomposition and for cvaluating the complexity of matroid algorithms arc also derived in
Sertion 3.3.

These algorithms are developed into a more practical version in Scction 3.4. This scction also considers
what happens when the practical algorithm is used Lo proceas real problems that do not satisly the generality
assumption, and it is shown that the performance of the practical algorithms ean be no worse than the
performance of the theoretical algorithms,  Finally, it reviews some implementation techniques that can
greatly speed up the algorithm,

- -
Y

M Sy




Scetion 3.2 The Matehing Property and the One Row Algorithm 39

In Section 3.5 some computational results are discussed which were obtained from a test inplementation
of the algorithin based on the considerations of Scction 3.4. While the test resulls are from a sinall sample of
problems and arc therefore preliminary, they are still encouraging for the eventual practical uuplementation
of the algorithm.

Finally the current status of this research is reviewed in Scction 3.6, with suggesiions about some
directions for fulure development. Particular attention is paid to possible enhancements of the algorithm
that might increasc its applicability.

3.2. The Matching Property and the One Row Algorithm

In this section and 1n Scction 3.3 it is assumned that the matrix A in (3.1.3) has full rauk. The cffect of
removing this assumption is considered in Scction 3.4.

3.2.1. The Matching Property

To illustrate the pitfalls in trying to solve SP solely from the sparsity pattern of A, consider the following
sparsity pattern:

X X 0 0 0

0 [x x x x| (3.2.1)
010 x:x X

L2

In order to make the first row sparser, a muitiple of the second row could be added vo the tirsu to zero out
the 1,2 position. However, it appears that the 1,3. 1,4, and 1,5 entries fill-in (change from a uero into a
non-zero) berause of this operation. To mitigate the fill-in, the multiple of row 3 that turns cotry 1, 3 back
into a zero could be added to row 1. The combination of these two row operations gives the same effect as
if the boxed submatrix of (3.2.1), which is certainly non-singular, was used to turn the 1,2 cutry into a zcro
while keeping the 1,3 entry zero. The expected resule is

X 0 0 x X
( 0 X X x X ),
0 0 X X X
which is not sparser.

Cousider now the following two matrices with sparsity pattern (3.2.1), transformed as above,

i -1 1
TA‘:(() 1 0) 0 1
0 0 I

1 -1 1\/1 0 00 1 0 0 -t -2
TA® =]0 10(0 |23=(011 2 3).
0 0 t/\o I ' 001 1 1

In the second case, the aparsity decreased as expected, but in the first case, the sparsity increased. The
teavon for the uncxpected behavior of A" is that the boxed submatrix has rank only 1, not 2, which causcd
cancellation Lo occur in columns 4 and 5. When a gratuitous zero appears oulside Lhe colutins we were trying
to affect (in the example we were trying to affeet columns 2 and 3, and for A' gratuitous scros appeared in
columns 4 and 5), we say that unexpected cancellation has occurred.

Predicling unexpected cancellation can be extremely diflicult. The next theorem shows that allowing
uncxpected cancellation makes SP caseatially intractable.

S -

P PSP |

I iy

-4 §

cenaias B

Aabd

s

hdnd A




i
RN _'!
.

e Y »
RN

T

| D

LINS S St dam Ja Mt o o
L

R T A e R L A S Yo A e B A S e L L A T e e .

40 Making Sparse Matrices Sparscr Chapter 8

Theorem 3.2.1: It is NP-Hard to solve SP.

Proof: This theorem and its proof are duc to Stockmeyer (1982). It is claimed only that SU is NP-1lard, rather
than NDP-Complete, because it is difficult to show that SP is in NP. However, Stockmeyer has conjectured
that SP € NP (see Garey and Johnson (1979) for the definition of NP).

The problem that we shall reduce to SP is

Simple Max Cut: Given an undirected graph § = (V, E), partition the nodes of § into P and V \ P
80 as to maxirmize

{{s,j}ekl|ieP,jeV\P}.

A proof that Simple Max Cut is NP-Complete is referenced in Garey and Johnson (1979) Problem
[ND186].

Let n = V', m = |E|, let A(G) be the usual (0, 1) vertex-edge incidence matrix of §, and let A; be the
n X 2m matrix which is all zero except for row 1, half of whose components are +1 and half —1. Let e be
the 2m-vector of all ones and let f be the (2m(n + 1) + 1)}-vector of oncs. Suppose that SP could be solved

for the matrix
(0 e e - e f
6 =(atey A i o a 8)

Define T° to be a matrix so that 7" B(G) is an optimal solution to SP. Since T" is non-singular, it must
have a perfect matching, which can be assumed without loss of generality is on its diagonal. Also, since T°
stays optimal after row scaling it can be assumed that T° has unit diagonal. Because of the size of f, it
is never worthwhile to use row 1 when reducing any other row, and hence the first column of 7° must be
(1,0,...,0)T. Thus no choice for the remaining entrics of the first row of T® can cause it to be singular.
Because of the column size of the A;, and since all entries are +1, it is helpful to usc every other row in
reducing the first row. Hence, the first row of 7~ must be (1,¢€,€2,...,¢,), where ¢, = +1 for all i € V.
Let » = {3 ‘¢ = +1}. Then the number of non-zeros in the first row of the reduced matrix of B(§) is
clearly

2mn+ )+ 1) +mn+(m-I{{i,j}CElie P,jeV\P}) (3.2.2)
But since (3.2.2) is minimized by the optimal T, P also solves the Simple Max Cut Problem for §. 0

This proof works because of the great opportunity for unexpected cancellation in a (0, 1)-matrix. The
proof shows in particular that any numerical approach to SP must be heuristic, rather than aiming for
optimality. In order to “combinatorialize” SP and bring it back into the class of polynomial algorithms, an
assumption about the non-zeros of A is nceded that effectively rules out unexpected cancellation.

As motivation for the assumption that will be used, consider the following chain of implications about
an n X n matrix 13:

rank B =nodetB#0 Esgnonbici #0
4 §

=3 therc is a perinutation o such that by, ,b20,,...,0ns, #0 (3.2.3)
& B has a perfect matching.

As the example of A' showed, uncxpected cancellation is caused by submatrices whose rank is less than
that suggested by their sparsity patlern. The notion of what rank “should” be turns out to be that if a
submatrix can be permuted so thal it has a non-zero diagonal, then it should have full rank. Since having
a non-zero diagonal is the condition in {3.2.3), rank ia what it should be if the implication in (3.2.3) goes
backwards as well. That is, if /3 has a perfect matching, then it should have full rank. Such “gencrality”,
“non-degeneracy”, “gencral position” or “independence” is often assutned in sparse matrix studies. A formal
statement of this property ia:

Matching Property (MP): A has (MP) if rank Agc = M{ARc) for all row subsets R and column
subsets C.

L.

SO

A S ST

2,

- ’_AAI IS YR




- . LRt At S San Sautd —— Pr—— T T——————— —_—— -

Section 3.2.2 The Onc Row Algorithm 41

In other terminology, (MI?) states that term rank and numcrical rank are the same for every submatrix
of A. In the example above, A% has (MP) but A" does not (it {ails precisely on the boxed submatrix).

It is interesting to consider how (MP*) relates o other possible assumptions. A very strong assumption
would be that the non-zeros of A act cssentially like independent algebraic indeterminaues. That s, any
entry of the result of any linear algebraic operation on A can be expressed as a multivariate polynomial in
formal variables x,,, one for cach non-zero of A. An eutry of the result s cousidered 1o be zero only if i
multivariate polynomial 1s identically zero. Algebraic independence implies (and therefore is stronger than)
(MP).

A similar assumption would be that each non-zero of A is perturbed from its original value by an
independent infinitesimal, similar to the consiruction olten uscd to resolve degeneracy. This perturbation
assumption also implies {(M{’). Thus (MP’) is weak relative to other such assumptions.

Although (MP) is not particularly stringent, most real-life matrices do not satisfy (MIP?). The reason
is that real matrices have many entries which are small integers, thereby producing subinatrices which
violate (MP’). We shall nevertheless construct an algorithm to solve SP assuming (MP) because Theorem
3.2.1 implies that there is little hope of solving SP without such an assumption. One reasonable heuristic
approach to SP’ is to solve it with {MP), and Lhen w apply the resulting algorithm to macrices which do not
necessarily satisfly (MP). Though it is an apparcat contradiction, such an (as yet hypoticiic Jd) algorithin
would be an “optimal heuristic” for SP. [t woula be optimal for those matrices that satinly (MP), ana it
would be heuristic for the others.

3.2.2. The One Row Algorithm

For the reason discussed above, in this scction and in Section 3.3 A is assumed to satisly (MI’) In order
to show that (MP) implics that no unexpected cancellation can oceur, some preliminary discussiot 18 needed.

As noted 1n Sectic..a 3.1, solving SP involves constructing a non-singular T so that TA 1s as sparse as
possible. By (3.2.3) T must have a perfect matching, and by permuting indices, it can be assumed that
every entry on the diagonal of 7' is non-zero. Scaling the rows of T does not affect the sparsity of TA, and
hence it can be further assumed that ¢;; = 1,1 = 1,2,. ., m. With this scaling, row 1 of T spccifies an
clementary row operation Lo be performed on row  of A, nameiy add the other rows of A to the i*® row
with the multipliers specified by the entries in row 1 of T Since TA is supposed to be sparser than A, its
i*® row should also be sparser, which leads to consideration of:

The One Row Sparsity Problem for Row i (ORSP,): Find { \i, k 7 1 } so that

;‘io = As’o T Z xkAko (3.2.4)
kA
is as sparse as possible.

Once ORSP, is solved, the hope is that the resulting M for row 1 of A can be packed into row i of T, which
can then be used to solve SP. It is not clear that the resultant T is non-singular as required; nevertheless,
in the rest of this section we shall concentrate on solving ORSP,.

A sct of multipliers { Mg | & > 1} for (3.2.4) when ¢ = 1 delines the following index subscts:

U={k>1|X#0},

H={j|&|,-=03nd (l[j#()},

S={j,a,;; =0and a;; =0and ax, #0 forsome k€ U},
GC=1y8,

F={j a,#0anda, =0},

P=FyuS={j a,;=0andax, #0forsomec k€ U/}, and
Z={j|a|, =0}

.. O v, .

£y

Aod
P

Sk

e K

ail® e




) U S

42 Making Sparse Matrices Sparser Chapter 3

y .

That is, U is the sct of used rows; /] is the sct of hit columns, where a non-scro was changed to a sero; §

is the set of saved columns, where a zero that might have been expected to be filled-in (since ag; 7# 0) was
b not filled-in; G is the set of good columns, wherc the entry was actively manipulated for the better; F is
- the set of filled-in columns; P is the set of potential fill-in columns; and Z iy the sct of sero columns. As
. an example of these definitions, the index sets are indicated for the following sparsily pattern:

PP T OV VP Y Vd

r
—_ 2
P
PR —
G
e ~ar——
H s F
P - .

XXX 00000 XXO0 0 newrowl

T N ey

' X X XXX 0000 0 0] odrowl
Pox Ix X XW
ix X X X %X X i |
Ui{: x [x x x{xXx| | prF0
l X X X |X ‘ | d
X X x| x: |
X X XX X }r=0
LoX X X X X X

Note that the net dccrease in non-zeros in row 1 is |H| — |F], so that solving ORSP, is equivalent to solving
maxy '/l — |F\.

Now (MP’) can be put to work. The next theorem states the intuitive result that if k columns of row 1 are
aflected for the good, at least k rows must be used. This theorem is the key fact that rules out unexpected
cancellation.

Theorem 3.2.2: For any X\, 'G! < |U].

Proof: By contradiction. Assume that |G| > [U].
If M(Aug) < |U] then by Proposition 3.1.1 A must look like

G

row 1

U< (3.2.5)

where the row subset /2 and column subset €' are defined as shown. (When we say that a matrix “looks
like” a picture such as the one above, we mean that its rows and columns can be permuted so that it has
the form shown.) Otherwise (M{Ay) = |U]), let R = U and C = G. In cither case, A has a submatrix

P P T N T N T



Section 3.2.2 The One Row Algorithm 43

that looks like

row 1

. ® (3.2.6)

—— e ]

®

| ol
N

where R C U, C C G and |R| < |C|. Also, the rows of & provide the only non-zero contribution to the

new row 1 in the columns of C, and M(Agc) = |R|. The sct of columns induced by a maximum matching

in Aj;c is denoted by N as shown in (3.2.6).

Note that Agy is square and M(Arn) = R, thus, by (MP), Apn is non-amg,umr Now AN +
XRARN = A,y = O since N C @, so that \p must be the unique solution of A\ Apn = - A n. Define
R=Ru{l}). Forke Rles Ry = R\ {k}, and for j € C\ N let N; = NU{j}. Theu Cramer’s Rule
implies that

4
L
)
i Aeg, PUTOTREr W4 W P .4 A i ¢ PO _:'LAAA-Z

A = (—1)*det Ag,n for k€ R. (3.2.7)

For j € C \ N (which is non-empty), using (3.2.7) and the expansion of the determinant by cofactors in
reverse, it can be shown that

ay; = det AkN,“ (3.2.8) '
Note that 5 € C C G implies that ;5 = 0. Il a;; # 0, then the perfect matching in Agzpy can be .‘
trivially extended by a,; to a perfect matching in ARN,-' But now (MP) implies by (3.2.8) that &,; # 0, a
o contradiction. b
- Suppose instead that a;; = 0. Then j € §, and therefore there must be some k € 12 such that ax; # 0. l

Since k € R C U, it follows that g 3£ 0. Thus, by (3.2.6), Ay, y must have a perfect matching. But adding
ai; to this matching gives a perfect malching of AN, Once again, (MP') and (3.2.8) imply that a,; # 0, a
contradiction. O

Corollary 3.2.3t+ M(Ayc) = |G|; thus, by (MP}, rank Ay = |G).

Proof: 1If M(Auc) < |G|, then by Proposition 3.1.1 A must look like (3.2.5), which would again lcad to a
submatrix of A like (3.2.6), which cannot exist by Theorem 3.2.2. O

Theorem 3.2.2 and its corollary prove that there can be no unexpected canccilation when (MP) is
satisfied. Indeed, (3.2.6) is precisely a picture of what is meant by unexpected cancellation.

It is possible to have [U]| > |G|, but it causecs additional work with no further increase in sparsity. A
subsct /# C U could be selected that perfectly matches into G (which is possible by Corollary 3.2.3), and
the non-xcro part of A computed as the solution of

M Arc = A, (3.2.9) j

o "v“
N 95

i Qs

PP « P

DA S

which gives the same result with less work. Conversely, suppose that a square, non-singular submatrix Apg U
is uscd to to sero out A, via (3.2.9). Then Theorem 3.2.2 implies that no columns outside G are affected
for the good (either hit or saved).

:_' Hence it can be assumed without loss of generality that [U] = |G]. Since ) is now uniquely determined :
. by an equation like (3.2.9), U and G can be thought of as determining X rather than viee-versa. Thus ORSP; k
r'. has been reduced to the more combinatorial problem of finding optimal U and G. ‘
p Since linding A requires solving a system of lincar equations of size |U/|, if there arc several differcnt

optimal U/ Lhe smallest cardinality onc is preferred n order to minimize work. ‘.ctually, as was mentioned ]

in Section 3.1, since work is proportional to the number of non-scros, the number of non-zeros in Ay should
be minimized, but |U; makes an acceptable substitute.) Formaily stated, we would ideally like to solve:




V-
[
(AN
)

.

£y

b

B

C e = e tw—w—w— T T——w L Jhum it ot Sl jends Aach enaSinat e At aen e ans g

44 Making Sparse Matrices Sparser Chapter 3

The Strong ORSP;: Find an optimal solution to ORSP; that minimizes |U].

A little reflection over the definitions of the index sets F, S, I and P reveals that they can be easily
determined combinatorially from U and G. In fact, P depends only on U (in words, P is the set of not-
identically zero columns j of Ay, such that a;; = 0), and so it will be denoted by P(U). The set 0 merely
determines how P(U) is split up into F and §. These observations lead to an easy proof that the gain of
zeros, |H| — |F!, depends only on U, not on G:

Theorem 3.2.4: Let G; and G2 be two scts of columns that perfectly match into [/, and denote the set
of hit columns corresponding to G, by H;, ¢ == 1,2, stc. Then
{Hy| = |Fy] = |Ha| - | Fal.
Proof: It is easy to see that |/I;| = |U| — |Si| and |Fi| = [P(U)| — |8/, so that [H;| — |Fi| = |U| - |P(U),
i=1,2 1
The proof shows that solving ORSP, is equivalent to solving

mLz’\.x[Ul - \P(U). (3.2.10)

Since A has ful! rank, every U/ must perfectly match into some column subset G; thus, the maximization in
(3.2.10) is over all U. Define R = {2,3,...,m} and U = R\ U, and call Agz the first zero-section of
A. By the definition of P(U), Az must look like

P(U)
e ——

e

1

Thus every non-zero in Apyz is contained in either a column of P(U) or a row of U. Consider R and Z to
be disjoint scts whose union is the set of lines of Apz. Then, since every non-zcro of Az is in a line of
P(U)JU, ARz is said to be eavered by the lines in P(U)LUT/. Conversely, supposc that L is a cover of the
first, zcro-section by lines with & minimal number of columns. Then define U = R \ {rows in L}. Since L
has a minimal nuinber of columns, the columns in I must be P(U) (otherwise a column could be dropped
from I and it would still cover Apz, contradicting minimality). Ience, covers by lines with minimal columns
correspond to subsets I/ C R.
Bul now ORSP’, has been reduced to

m&\xIU! ~-PU) =(m-1)- muin(II’(U)! +10)
—(m-1)- min_|L) (32.11)

Lcovers Apg

so that finding a minimum cardinality cover of the first zero-section also solves ORSP,.
The classic combinatorial duality theorem of Konig and Egervary (Ryser (1963), Theorem 5.1) shows
that a minimum cover in {3.2.11} can be computed via a maxitnum matching in Apy:

Theorem 3.2.5: M{Apz) = min{lL| ! I, covers Apz }, and maximum matchings and minimum covers
are dual combinatorind objects (which means that any algorithm that computes onc must also compute the
other, at least implicitly). O

defiinialiicti:

shadb ekt dedeadesde

ittt

(&~ S e



b
p
[ Scction 3.3 Theoretical Algorithias for SP 45

:I Finding maximum matchings in bipartite graphs is a well-studicd problem, for which many polynomial .:

algorithms have been developed. Most such algorithms lind a maximum matching by labelling. If labels )
are started at the row side of the bipartite graph, then at the final iteration of a labelliug algorithm the 4
labelled rows and columns arc those reachable by a partial augmenting path from an unmatched row. The
dual minimum cover can be extracted from the final labels as { labelled columns } U { unlabelled rows } (sce
Lawler (1976), p. 193). Since U is complementary to the rows in a minimum cover, U is the set of labelled

DR L v,-v,‘ Lt e aacaer e
B Sl

rows at the end of a maximum matching algorithin (and P{U) is the set of labelled columns). In matrix )
terms, if the first zero-scction is the matrix in (3.1.5), then {/ is the sct of rows of C. Tlus gives a polynomial ]
algorithm for solving ORSP;. ]

There is still more juice that can be squeezed out of the maximum matching. Recall that it s preferable
to solve the Strong ORSP;, i.e., find the minimum cardinality U amnong all optimum {/. Notc that it is 1
easy to turn the maximum matching problem on Agz into a network flow problem (sce Scction 2.5). In the 4
:] network flow context, the dual object Lo a maximum flow is a minimum cut. At an optimum of a network )
i flow problem, a minimum cut can be extracted as the set of vertices reachable from the source by a partial ]
augmenting path (as above for minimum covers). Let the minimum cut computed i this way be called ]

- the standard minimum cut. Since labels for maximum flow and maximum matching are somorphic, the

. standard minimum cut (standard minimum cover in matrix terins), must be cqual to I u P(U).

Theorem 3.2.6: In any network the standard minimum cut is a subsct of every minimum cut. Thus the
standard minimum cut is the same for every optimal flow. lence its definition is indepeadent of the optinai
flow uscd to compute it, and it has minimum cardinality among all minimum cuts (sce lFord and Fulkerson
(1962), p. 13). T

Since the standard minimum cut and the standard minimum cover have.complementary sets of rows,
U is the sct of rows in the standard minimum ecut. Such a U is alrcady known to solve ORSP; by (3.2.11).
Theorem 3.2.6 states that the standard U is unique, solves Lhe Strong ORSP;, and can be found at no
additional expense. Rcturning to the partition (3.1.5), if Agz has several such partitions wn which C has
different sizes, then by Theorem 3.2.6, maximum matching automatically generates the partition in which C
has the fewest rows possible. In ad ition to cutting down on the amouat of work needed Lo solve equations for
X in practice, this theorem has important theoretical implications that are explored in subscquent scctions.

Note that there is a strong asymmetry in choosing which side of the network is the source. The above
discussion applies when the maximum matching or network flow is started from the row side. IT it is started
from the column side, then the largest U that is optimal for ORSP, is gencrated instead of the smailest.

We shall now put all the pieces together into an algorithun for solving {the Strong) ORSP,.

The One Row Algorithm for Row i (ORA;):
S 0. Perform a maximum matching in the i*® zcro-section (starting from the row side).
I. Construct U; as the set of labelled rows at the cnd of the matching.
F! 2. Find a column subset G; that perfectly matches into U; (then Ay,g, is non-singular by (MP)).
: 3. Solve XE.AU‘G, = —Aig,.
4. Set Ao to Aip + N[}, Au,e.

Note that Step 2 allows considerable freedom in choosing Gy, & point whose importance is shown later.

3.3. Theoretical Algorithms for SP

We would like to comnbinc the local solutions to ORSP,, ¢« = 1,2,...,m into a global solution for SP.
However, this process rcquires care. For cxample, consider the matrix

_f1 2 Qs
A= 9. (3.3.1)
Denote the (unique by Theorem 3.2.6) optimal {/ for ORSP; by U,. Then for (3.3.1), U; = {2} and

Ug = {1}. (When the i*" zero-section has no columas as in this case, the bipartite graph of the zcro section
has only left (row) vertices and no edges. Hence a matching algorithm terminates after it has initially

PR S VY AP AL L Sy P W LI S S Y WL P a




e

P BNE Sivas s St aCI B e i e S e o

46 Making Sparse Matrices Sparser Chapter 3

labelled all of the rows. Since U : is the set of labelled rows at optimality, v!hen row s is completely dense
U; = {1,2,...,m}\ {i}.) At row 1 Gy can be chosen to be {1}, giving Aje = (0 —1). In row 2, Gy
can also be chosen to be {1}, giving Azs = (0 1). With these choices the final result is

-6

which is singular. This illustrates that the G cannot be chosen arbitrarily in Step 2 of ORA;.

3.3.1. The Parallel Algorithm

There is a fairly natural way to choose G; in Step 2 that avoids the potential difficulty above, and that
also saves time l.et M be a fixed maximum matching for A (M must be row-perfect since A has full row
rank). Once 1] is determined in Step 1 of ORA;, G, can be chosen to be the set of columns that U matches
to under M. Note that A, the output of running ORA, for + = 1,2,...,m, equals TA, where the i*® row
of T has onc in the diagonal position, and is the X from running ORA; elsewhere. Define T to be the T
obtained by choosing the G, relative to M. Thus when 1 # 7, t:j #O0ifand only if € U..

Supposc that it could be showr that T is non-singular, so that it is a valid candidate for a T to solve
SP. Then T° mnust be an optimal solution to SP. Consider any other candidate T, which can be assumed
without loss of gencrality to have a diagonal of all ones (as in Section 3.2). If T increased the sparsity of A
more than T°, then at least onc row of TA would have to be sparser than the corresponding row of T°A.
But the optimality of ORA, implies that every row of T" A is individually as sparse as possible. Thus T° is
optimal if it is non-singular.

The determination of the non-singularity of T° depends on the implications of the uniqueness of the U :
for the structure of T*. Define a directed graph D* with nodes {1,2,...,m} and ares {{k,i)'k € U} }, s0
that D° captures the sparsity pattern of 7. Such a directed graph can be similarly defined for any square
sparse matrix T with non-zero diagonal.

In any directed graph D, node j is defined to be reachable from node 1 if there is a directed path from
t to j. The relation

1 ~ 7 & tis reachable from 5 and j is reachable from ¢

is an equiva'enee relation that partitions the nodes of D. A class of this partition is called a strong
component »" 2: every node in a strong component C is reachable from every other node in C. If a node
! in strong cemuvonent C; is reachable from a node k in strong component C;, then C; precedes C;, which
is denoted C, < ", It can be shown that the < relation is a partial order on the strong components.

To reflect the strong component partition back into matrix terms, order the strong components of D
in a linear order consistent with <, and order nodes arbitrarily within components. If the corresponding
principal permutation is applied to T, it induces a block lower triangular structure, where the diagonal
blocks are irreducible and correspond to the strong components. This decomposition of T is essentially
unique and is called the (squarc) Dulmage-Mendelsohn decomposition (or DM decomposition) of T.
The DM decomposition is studicd more closely at the end of this section. Sce, c.g., George and Gustavson
(1980) for details of this decomposition. For example, if

¢, € C
X X |

T = X X , then D = M

X
— C\ Cs Cs
X X ;X | X

where the decompositions of T and D are indicaled by boxes. The next thcorem shows that the block
triangular decomposition of T° has a very special structure.

At Sad B ang |

P

ali,




TR T W T TTwW T W TR R T W YW T W W Y g R T T a T T R e W N W T W W W Y T T T N T W T T e T e Ty e T e T e T

;
1

J

]

Section 3.3.1 The Parullel Algorithm 47
Theorem 3.3.1: If{ £ i, €U, and ke U], then L€ U;. i
Proof: Vor ease of notation, let U == U, U = {1,2,...,m}\ (i}\ U, ¥ = PU]) and P = 7%\ PU;).

Thus U and U partition the rows of the i*h zero-section, and P and P paruition its columns. By definition

of P(U) and k, the i*" zcro-section looks like

P P

U : 0 . row k

<
FT O SR P

A

L L

"

Since /] corresponds to a maximum matching, by Proposition 3.1.1 Ag > has a row-perfect malching, and
so at least I/ lines are nccessary to cover it. Note that since A, == 0 and k ¢ U, Ay 18 a submatrix of
the k'® zero-section.

Let L; be the standard minimum cover of the &*P zero-section by lines. Recall that the standard ‘
minimuin cover has the largest number of rows among all minimum covers. Consider the sct of lines Ly =
L, GU \ P. The sct Ly docs not contain the columns of P, and so it might not cover A_p;, which is part
of the k*" zero-section. Since the only diflcrence between Ly and Ly is i lines passing through Ay L
does cover the rest of the k! zero-scction. But the only non-zero rows of A p are the rows in U, and since
U C Ly, Ly also covers the k*! zero-scction.

L, and Ly have the same set of lines outside Agys. Since Agps has a row-perfect matching, the number

of lines of I, passing through Agp must be at least ;{J|. The lines in L, passing through Agp are precisely

F9

B fbeietind

>

U, the minimum possiblc number, and so overall L, contains at most as many lines as /.. But since L is
miniinum, Lx must also be a minimum cover

Finally, note that L, contains at lcast as many rows as Lg docs. But since Lg 18 the (unique) standard
minimum cover, L; has the inaximum possible number of rows among all minimum covers  Thus Ly must )
equal /g, so that U C {rows of Ly }. Taking complements gives U; {1} D U, _ {k}, which gives
U\ {i} C U;, as desired. O

in graph terms, Theorem 3.3.1 imnplies that if [, k and ¢ are distinct nodes of D°, and {l, k) and (k, «} are
cdges of D, then (I, 1) inust also be an cdge of O° When this is true of an a directed graph, it is said to be

transitively closed. Applying the theoren inductively, 3 is reachable from 2 in D° if and only if (i, )
& an edge of 0°. In ters of the block lower triangular structure of T°, this result implics that the diagonal
e blocks of T are all completely densc, and the subdiagonal blocks arc cither all sero or completely dense.

In particular, if § and j are in the same strong component C of D°, rows ¢ and row j of T° have the same
- sparsity pattern, so that C C U u {i} = U; U {J }. These insights into the structure of T" are crucial to
the proof of the next thcorem.

Theorem 3.83.2: T is non-singular. ]

Proof: It can be assumed without loss of generality that M matches row ¢ o column i in A, 1 = 1,2,...,m,
and that the indices of A and T are ordered so that 7'° is block lower triangular. Since T° is block lower
triangular, it suffices to show that each diagonal block of T* is non-singular.

Reeall that the effect of ORA; is to make /-1,-(,-' = 0. By the choice of M, and G relative to M, G, = U},
so that ;1.0: = 0. Since i ¢ U}, the blocks of A corrcsponding to the diagonal blocks of T° are diagonal

le

s

matrices; the subdiagonal blocks of A corresponding Lo dense subdiagonal blocks of T° are completely zero.

T ey Yy

Thus a typical A and T might look like ’
11' 0 0 * * * * . l) * & * <
0 F 0)[* ¢ * *s)l=|* p * =)
0 I:' I" * * * » . 0 l) *
T A A

T v
Y JUNED
mabifle




48 Making Sparse Matrices Sparser Chapter 3

Pl S

where “F™ represents a full or dense submatrix, “D” represents a diagonal submatrix, “0” represents a zero
submatrix, and “*” represents an arbitrary submatrix.

Denote the set of indices of a typical diagonal block of T* by C. For i € C, let Uec = UiU{s}; as
discussed above, this definition is independent of 1, and C C Uc. If C = Ug, as is the case with the firat
two blocks in the example, then 'I';;CACC = Acc, which is diagonal, and which has non-sero diagonal since
there can be no unexpected canccllation. Since M restricted to Acc is a perfeet matching for Acc, Acc is
non-singular by (MP). But then Too = ;\CCAE},-, and so T'o( is non-singular.

Suppose instead that C C Ug, as in the third block of the example, and define L = Uc \ C. Thus

AL ALc)_
Acr Acc

A ide

Pyl YR

Ayoue = (

The submatrix T ¢ satisfies the following equations by definition of T*, C and L:

TerAw + TecAcL =0
ouiLT T cefiok = (3.3.2)
TorAe + TecAcc = Ace, which is diagonal.

Since M restricted to Ay .y, is a perfect matching for both Ay.u. and AL, by (MP) both Ay .y, and Ay
are non-singular. Since Ay is non-singular, T;;c can be partially solved for in (3.3.2) to get

Tec(Ace - AcLALLALc) = Acc- (3.3.3)

The matrix Acc — AcrLA[LALc in (3.3.3) is called the Schur complement of Ay in Ay.y., denoted 3
(Avcuc/ALL)- Tt is well known (see Cottle (1974), equations (2) and (4)) that when Ay .y, is non-singular, ;
(AUcUc / Au) is non-singular if and only if A, is non-singular. Since AL, is non-singular here, ch can p‘
be fully solved for in (3.3.3) as the produet of two non-singular matrices, implying that ch is non-singular .
in this case as well. 0 1

Since T' is non-singular, it can be used to transform A into A. Generating A via T* processes each
row in parallel, i.e. each row is solved relative to the original matrix rather than relative to a partially
transformed matrix. We call this procedure the

3

Parallel Algorithm (PA): ?
Find a maximum matching M of A. p
Fori=12,...,m ) ;
Generate row ¢ of A from A using ORA;, picking G; relative to M. )

End. I

The results in this section make it easy to prove the next theorem. ll
Theorem 3.3.3: PA solves SP.

Proof: T' i3 non-singular by Theorem 3.3.2. Sincc every row of A is made as sparse as possible in AT
must be optimal. O

3.3.2. The Sequential Algorithm

The parallclism of PA scems unsatisl‘actory for three reasons. First, it is more natural to process A
sequentially, i.e. by solving cach row’s matching problem on the partnally reduced A whose previous rows
have alrcady been processed. Sccond, by processing A sequentially, A can be overwritten on A, thereby
saving space. Also, it is shown later that the optimal U's can only become smaller, which saves time in
solving cquations (3.2.9). Third, and most important, with PA the flexibility in choosing G at Step 2 of
ORA; is lost. llaving flexibility in choosing G, is important when the algorithm is applied to rcal problems
that might not satisfy (MP). It is important because in practice Ayeg might be singular despite having a
perfect matching. )

For these reasons, we consider the following algorithm, which overcomes the objections to PA:




LR e T T P PP PP
a ' BN T
. e, a ot

—
B

T T e T e W T W, T T T W TR T T TN T T e W WG T @y g
L A A POECHEERRC T ) - N W W W W T T e ———

Section 3.3.2 The Sequential Algorithm 19

Sequential Algorithm (SA):
Fors=1,2,...,m
Apply ORA, to A, choosing (i; in any way desired, as long as AU}G.- is non-singular.
Replace row i of A by the generated row i of A,
End.

Note that A is dynamically changed every time through the loop in SA, so that (M) might no longer hold
for the partially transformed A. However, we know of no example where (MP) fails. By the nature of ORA;,
cach itcration of the loop in SA is equivalent to left-multiplication of A by an elementary transformation.
That is, at iteration i of the loop, the current A is lelt-multiplied by matrix EY, where E' is the identity
cxecpt that row ¢ of /* is the X\ from ORA,. Since all the E* are non-singular, the output matrix of SA is
equivalent to the original A.

It was casy to prove that PA produces an optimally sparse answer, but difficult to prove that its output
matrix is equivalent to the input. For SA, the situation is just thc reverse. The ncxt theorem uses the
optimality of PA to show that SA is optimal.

Theorem 3.3.4: SA produces the same final aumber of non-zeros as PPA, and hence SA also solves SP.

Proof: The U computed for row i by ORA, in PA is still denoted by U], and the {possibly different) U
computed for row ¢ in SA is denoted by U;. Denote by A* the partially reduced A at the beginning of the
i*" iteration of SA (just before replacing row i), so that the original input A cquals A'. The proof is by
induction on the row index 3; we shall prove row by row that SA produces the sanic reduction in non-zcros
as PA. The hypothesis Uy C Uy, for all k& < 1 is also carried through the induction. At row 1, U] = U,
since A = A', and SA and PA both reduce row 1 by the same amount, proving the base of the induction.
For row i, let R = {1,2,...,m} \ {1} and Z be the row and column indices of the ¢*! zero-scction for
A*. Since row ¢ has not yct been changed in A*, R and Z are also the index sets of the i*? zero-section for
A'. Recall that L' = R\ U] U P(U;) is the standard minimum cover of A}, by lines. The first claim is
that ° is also a covering of A%, by lines. Let P = Z \ P(U}). The only way for L' not to be a cover is if
the result of a previous operation has introduced a non-zero into AL.F (the part of the $** zero-scction not

covered by L°). A
Suppose that the first non-zero introduced into A, is in row L of U;, and that it originated from row

k while processing row { < 1, so that k € U;. By the induction hypothesis, U; C U;, implying that k € Uj;.
Since L € U, and k € U,., and since k clearly cannot equal 7, by Theorem 3.3.1 k € U:‘ Since iteration ! is

the first one where Ay . became non-zcro, and since k € U, A} is zero. But then row k cannot introduce

; ' i ; o i
a non-zero into Ay ... Thus A7 . must still be zero, and so L' is a cover for Az.

Now |L°| = M(ALz) (by Theorem 3.2.5)
=rank Ak, (since (MP) does hold for A')
= rank A}, (since A} is a non-singular transformation of AL )
< M(A%z) (by (32.3)

§ (L°] (since any cover provides an upper bound for M(AY,,).)
Thus |L"j = M(AY%,,), and so by Theorem 3.2.5, L* must be a minimum cover for A% 2. However, I°

might not be the minimum cover whose complementary U/ is smallest. Since U is the complementary U for
L', and U, is the complcmentary U for the standard minimum cover for A%z, Theorem 3.2.6 ensurcs that
U: C U;. This verifics one . the induction hypotheses.

Recall from (3.2.11) that the reduction in non-zcros from solving ORSP; is (m ~ 1) — |/, where L is
a minimum cover for the i*h zero-section. The chain of cqualitics above shows that M(Ak,) = M(A%,).
By Theorem 3.2.5, the minimum covers for A}, and A%, then have the same size, and the reduction in
non-zcros is the same for both. Bul the reduction in non-seros for A}, is achieved by PA, which is optimal
for row ¢, and so SA must also be optimal for row . 0

The proof of Theorem 3.3.4 produces the bonus that the sequential U’s are (if anything) smaller than
the parallel U’s, so that SA needs to solve smaller linear systems to obtain .

T —

A A

e A by aie

Ao aca aia

bttt a

—ls




e Al Pl s v v COhk Al Sl atnl BEN G e AN R A AN

50 Making Sparse Matrices Sparser Chapter 8

3.3.3. The SP Decomposition

The proof of Theorem 3.2.2 shows that the U are strongly interrclated, and that their joint struc-
ture is related to the block triangular decomposition. Block triangular decomposition was developed by
Dulmage and Mendelsohn (1963) for rectangular matrices, but our interest is in DM decomposition of square
matrices, as discussed in the reinarks before Theorem 3.2.2. The theory of decompositions has recently been
considerably generalized by [ri (1983).

Let M be a row-perfect matching in A, and let' m(1) be the column to which row ¢ matches under M.
Define the dirccted graph Dy to have nodes {1,2,...,m} and ares {(5,5) | @; m() # 0}. We say that row
7 is reachable from row 1 via M, denoted ¢ ™ 7, if 7 is reachable from ¢ in Dy. For example, il

® 0 0
A= (x ® x),
0 X ®
and M is the circled matching, then 1 — 3 but 3 4 1. Note that this concept cssentially depends only on the

square submatrix of A induced by the matched columns of M. The next thcorem illuminates the connection
etween the U/, and DM decomposition.

Theorem 3.3.5: € U; if and only if ¢ ;’ J for all row-perfect matchings M of A.
Proof: Two facts are necded for this proof. Fact ! is that any (partial) matching M can be extended to a

maximum matching M that uses the same columns as M (sce Lawler (1976), Theorem 5.4.1). Fact 2 is that
1 Kf J if and only if the squarc submatrix of A induced by the columns of M can be partitioned like

M
'® I
P ® !
R 0 row j
®
o (3.3.4)
I®
R ® row ¢
®
L
N

where IR is the subset of rows k for which ¢ I(' k, M is the subset of columns matched under M, and
N = {j ' m{k) = j for some k € R}.
(Proof of =) Assume that i € U;, but that there is a row-perfect matching M such that § ;44 J, and

so by Fact 2, A.p looks like (3.3.4). Let N be M restricted to Ayn, and note that A,y is part of the jt*
zero-scetion. Using Fact 1, extend N to a maximum matching in the 7% zero-section, which then looks like

000000000 0| rowj
unmatched lr '
rows |
® 0 | !
® :
® |
® 4
® . row ¢
®; !
| S




R D N IR T A W W T W e w W T ~— _—TTTT Y

7
L 5
-~

Y e a4
P
ol

Section 3.3.4 The Complexity of the Null Space I'roblem 5l

Because of the zeros above the matched part of A,n, there is no way to label a row of R starting at an ]
unmatched row. But then i(;/U;, a contradiction. «
(Proof of <=) Assume that 1 o J for all row-perfect M, but that 1 g’/l/;. Since t U

;0 tis not in the

A Tas n‘.r r. CAO
i

standard minimuni cover of the j'® zcro-section. Hence, the j*® zero section with a maximum matching N
in it must look like

[0000O00O0O0GOGOLO0 rowj

K
| d
® | 0 | 114
® ; 3
® ; J
® f
® ! rowd .1
® i :
By Fact 1, N can be extended to a row-perfect N in all of A that uscs .he same columns as N, so that A K
looks like -
X®X X/0 00000000 0! rowj ]
® | ! »
] i ]
® | 0 3
R i :
l® ! 1
! 1 "] ‘ row .4
L | . ® J _
But now é» J by Fact 2, a contradiction. [J .
The remarks after Theorem 3.3.1 show that the U] induce a decomposition, which we call the SP ]
decomposition, on the rows of A. That is, .‘l

i~jeicUjandjeU;

is an equivalence relation which induces an ordered partition on the rows of A. Stated another way, i ~ j
if and only if i and j belong to the same diagonal block of T°. Because of the uniquencess of the U;, the
SP decomposition is an intrinsic or canonical property of a sparse matrix. Theorem 3.3.5 was motivated by
curiosity about the relationship of the S decomposition to the DM decomnposition, which is also canonical. ]
The coutent of Theorem 3.3.5 is that the SI’ decomposition is the coarsest partition of the rows that is a
refinement of every square DM decomposition.

3.3.4. The Complexity of the Null Space Problem

N Another interesting theoretical conscquence of PA and SA applics to computational complexity. QOur 1
- research into SP was originally motivated by a different problemn, the .1

, Null Space Problem (NSP): Liet m < n. Given a sparse m X n full-rank matrix A, find an (n—m)Xn
’ null space matrix Z of full rank so that (1) ZA” = 0 and (2) Z is as sparse as possible.

NSP is also an important problem to solve {or large-scale constrained optimization, since so-called null
space mcthods need such a 7 to operate efficiently (see Gill, Murray and Wright (1981), Section 5.1.3; see
- also Kancko, Lawo and Thicraufl (1982) for a heuristic approach to NSI® for a subclass of matrices). “

Supposc that there were a polynomial algorithm for solving NSP (say, Algorithm 4). Apply Algorithm
Z w0 A o obtain an optimal Z°. Now apply Algorithm 7 to Z° to obtain Z°°. Since A spans vhe null space
of Z°, by simple linear algebra Z°° must be cquivalent to A. If there were any other matrix cquivalent Lo

A a4 4 4 .




Y . T i i St B i Bt M e Shate ~ - L i 2l i a3

52 Making Sparse Matrices Sparser Chapter 8

A and sparser than Z° ", then Z** would not be an optimal null space basis for Z°. Thus Z ** must be the
sparsest possible equivalent matrix to A, so that Z°* solves SP for A. In a vaguc sense then, SP = (NSP)2.

It is fascinating that solving NSI’ is NP-Complete, even with a stronger gencrality assumption about A
than (MP). Somnc preliminary discussion is needed to show this result.

Suppose that there is a vector z° in the null space of A that has fewer non-zero entries than any of
the rows of Z°. If z° is adjoined to Z°, a dependency that includes z° is created among the rows of the
augmenced matrix. If a row of Z° which is dependent on z° in the augmented Z° is deleted, the resulting
matrix still spans the null space of A, and is even sparser than Z°. Therefore an optimal Z° must include
a sparsest possible null-space vector.

Now consider the subset C of columns of A picked out by the non-zero entries of such a z°. Since
Auczg = 0, the columns in C must be dependent. By (MP) or any stronger assumption, since A,c does
not have full column rank, it cannot have a column-perfect matching. By Proposition 3.1.1 A.¢ looks like

C

.

with column subset D defined as indicated. The columns of D must also be dependent, but if [D| < IC|,
there is a sparser null-space vector than z° based on D, contradicting that z* is sparsest possiblc. Thus A.¢
must look like

®
R ®

®

where R is the sct of non-zero rows in A,c. If |R| +1 < |C|, a column of C could be dropped and the
columns in C would still be dependent, so that [R|+1 = |C|. For j € C,let C; = C \ {j }. Then M(Agc,)
must cqual |R] for all 5 € C, for otherwise the size of C could be diminished, again contradicting optimality
of z°. Converscly, given such a C, a null-space vector z° whose support is C can clearly be constructed.

A column subset C such that A, has |C] — | non-zcro rows R and such that M(Agc,) = |R] for all
J € C is called a circuit of A. (It is called this because it is a circuit of the matroid generated by the
columns of A. A circuit of a matroid is a minimal dependent set; sec Welsh (1976).) Thus if NSP has a
polynomial algorithm, there is also a polynomial algorithm for the following problem:

The Minimum Circuit Problem (MCP): Given an m X n sparse matrix A, find a minimum
cardinality circuit of A.

The size of a minimum circuit of A is called the girth of A.
Theorem 3.3.6: MCP is NI>-Complete, and thus NSP is NP-[lard.
PProof: This proof is due to Stockmeyer (1982). The problem that we shall reduce to MCP is

The m-Clique Problem: Given an undirected graph g, determine whether § has a elique of sizte m
(a clique is a node-induced complete graph; sce Bondy and Murty (1976), Scction 7.2).




'y

Section 3.4 Practical Algorithms for SP 53

A proof that the m-Clique Problem is NP-Complete is referenced in Garcy and Johnson (1979), Problem
[GT19).

Given a graph G with v vertices and e edges, construct a (v + (';') —-m - l) X e sparsity pattern A(G)
as follows. Index the first v rows of A(G) with the vertices of G, and its columns with the cdges of G. Make
ai,{jk} 7 0 when i = j or ¥ = k, so that the first v rows of A(§) have the same sparsity pattern as the
vertex-edge incidence matrix of §. For row 1 > v, set a;. 7 0 for all e.

Suppose that A(G) has a circuit C with [C| = ¢ < (7). Let d = () — ¢, so that d > 0. Since C is a
circuit, A, has ¢ — | non-zero rows. Becausc the (';) — m — | non-vertex rows are among these, A,c has
(e—1)- ((T) -m— l) = m — d non-zero vertex rows. Dcenote the sct of such rows by R, and denote by
J the number of edges in the subgraph of § induced by the vertices in 2. Since |R| == m — d vertices can
induce at most ("',;“) cdges, f < "‘,;d). But surely all the edges in C arc among thosc induced by R, so
that f > ¢ = (';) — d. Putting these inequalities together yields (7) —d < e < ("'2_"). However, it is casy
to show that when m > 3 (which can be assumed without loss of gencrality), (7) — d > (™7 9).

Thus every circuit C of A(§) must satisfy |C] > (';) Suppose that § has an m-clique, say on the vertices
in the set /2 (so that 2] = m), and with the () edges in theset C. Since |R|+(number of non-vertex rows) =
('2") —1=|C| -1, it is casy to verify that C is a circuit.

Couversely, suppose that A(G) has a circuit of size (';‘), and let R be the m non-zero vertex rows in
A.c. Let f again be the number of edges in the subgraph of § induced by R. As above, it must be true
that f > |C| = (7). But m vertices can induce at most (%) edges, implying that f < (7). Hence f = (),
and the vertices in R are an m-clique.

Thus G has an m-clique if and only if the girth of A(§) is (';') If there were a polynomial algorithm for
MCP it could be used to determine the girth of A(G), and thereby dctermine whether § has an m-clique.
But the m-Clique Problem is NP-Complete, and so MCP must also be NP-Complete. Therefore solving NSP
is NP-Hard, since (as shown above), solving NSP also solves MCP. 0O

This theorem establishes the somewhat surprising result that, under the assumption (MP), NSP is NP-
Hard even though SP = (NSP)? and SP has a polynomial algorithm. Hence complexity is not prescrved
under taking “square roots.”

This analysis also has a conncction with a different arca of complexity research. Hausman and Korte
(1981) have investigated the relative power of various matroid oracles in order to improve understanding of
the complexity of matroid algorithms. They have shown that a girth oracle is strictly stronger than any
other matroid oracle studied. It was previously known that there is a polynomial girth oracie for graphic
matroids (sce [tai and Rodch (1978)), but no polynomial girth oracles have been discovered for any more
complicated classes of matroids. The matroids generated by the columns of sparse matrices satisfying (MP)
are transversal matroids (sce Welsh (1976), Section 7.3). Transversal matroids are one of the simplest classes
of matroids besides the class of graphic matroids, yet Thecorem 3.3.6 shows that it is extremely unlikely that
there is a polynomial girth oracle for transversal matroids. Perhaps this is why girth oracles are so powerlul.

3.4, Practical Algorithms for SP

We now consider using the algorithms of Section 3.3 to process real matrices. The behavior of the
algorithins when A does not have full rank and when it does not satisfy (MP) is investigated. Various
modifications to the algorithms that decrcase their running time in practice are also discussed.

3.4.1. Processing Rank-deficient Matrices

The first step in developing a more practical algorithm than PA or SA is to drop the assumption that
rank A = m. The object of solving SI’ is Lo {ind a sparser matrix A that spans the same row spacc. Therefore,
when A is rank-deficient an algorithm should select a row basis for A, delele the remaining dependent rows,
and use PA or SA to make the row hasis optimally sparse. The next theorem shows that while (MP) still
holds, the answer obtained is independent of the choice of basis.

L) e 4




h@wmwvﬁw ' X T W P Jaaa ¥ 1*—.'11
-
L 8
3
54 Making Sparse Matrices Sparser Chapter 3
P’q Theorem 3.4.1: Both PA and SA produce the same final number of non-zeros when applied to any maximum
{ independent subsct of rows of A.
d

Proof: By Theorem 3.3.4, it suffices to prove the theorem for PA. Any two bases are connected by a sequence
of row swaps, and hence it is sufficient to consider two bases that differ only by a swap.

Let By be a subset of rows which is a basis for A, and let r and s be rows with r € By, s & By such
that B; = By U {s}\ {t} is also a basis for A. We shall show that PA produces the same final number of
non-zeros when applied to Ap,. and Ag,,. Since (MP) is still assumed, rank A = M(A) = |B,| = |B,|.

Let i € By \ {r}, and let [, be the size of a minimum cover of the i*" zero-section in ABie, k= 1,2
By (3.2.1) it suffices to show that {; = l,. Define U,U and P P so that they partition the rows and columns
of the i*? zero-scction of Ap. as before, and hence U = U (of Ap,s), ete. Recall that Ly = UUP is the
standard minimum cover of the i'" zero-section of Ag,s by hnes, so that ly = |Ly|. The i*t zero-section of
Ap,. with a maximum matching M and row s adjoined must look like

000 0O0COCOOOOO0O0O0O 0O O0]| rowt
(
vl i® 0
o
>i ®
' ® |
D
®
U4 ® |
®
®
{ ®
[ XX X0000O0 row s
Y e —— p———
P E N
F

By Fact 1 of Theorem 3.3.5, M can be extended to a perfect matching M of all of Ap,, that uses the
same columns as M. Hence it can be assumed without loss of generality that M is part of a row-perfect
matching of Ap,.. Thus row s mnust be zero in columns in N (the unmatched columns), for otherwise M
could be trivially extended to row s, contradicting the fact that B is a basis.

Define £ to be the columns in P where row s is non-zero, as shown above. Let M be .M restricted to
Agp. Try to extend M by labelling in the submatrix AUu(a) p. Since Auu(') 7 is zero, M cannot be so

extended, for otherwise M could be extended. Define the submatrix of labelled rows and columns of Agp to L
be B; clearly /£ O {columns of 11}, and by the propertics of the labelling process, I3 must be square. Note

also that the rows of /2 must be zero in the columns of P\ {columns of I}, for otherwisc more rows and
columns would have been labelled. Thus the picture has now become

el & d .
@ -




v

wrrrer

.

Lad. Adh A\ A Al ap ity

LANL & Aeid csndl FREN SN Sul S iy
o i I . '
. ‘ P
e . P

‘

ﬂv""‘.

W W TR o T s T W . W™

Section 3.4.2 Processing Matrices without (MP) 58
000 0O0CO0O0OOO0UOO0UOUO0O0 0! rows
¢ 7 ‘
!
Ul ® 0 ;
® |
® ]
f ® ‘ |
® B I
® 0 0 |
K ® |
® !
® l
\ ® ,
X X X 000 0/0000 00 rows

Define Ly = L; U {columns of B} \ {rows of B}. By the abovc remarks, Lz must cover Ap, y{4},0
and so it also covers Ap,,. Note that L] = |L; = {;. Since L; is a cover of the i*" zcro-section of Ag,,,
l3 can be at most {;. Now repeat the argument, reversing the roles of 3, and By, and of r and s, obtaining
I < I;. Thus l; = I3, and consequently PA produces the same result on row 1 with cither B or B,.

It remains only to show that PA produces the same final number of non-teros for r in Ag,, as it does
for s in Ap,.. Note that row r might have a different starting number of non-izeros than row s. It is only
claimed that the final answers have the same numbcer of non-seros; if, say, row r has more initial non-zeros
than row s, PA must eliminate more non-zeros from Ag,. than from Ag,, 1o obtain the same final number
of non-zeros.

Let M be a perfect matching in Apg, ., and adjoin 8 to Ag,.. Now try to extend M in Ag (4}« by
labelling as above, starting at s, again obtaining a square submatrix B of Ag,. such that the rows of B are
zero outside the columns of B. Thus the picture must look like

® o TOW 7

®
®

; ®
[X X X 00 0000 0] rows

Since s can be exchanged for r while maintaining a matching of size¢ |B;|, r must be among the rows of B.
But B has a perfect matching, so that PA can clearly use all the rows k 7 7 in B to eliminate all but one
non-zero from row r, and this usc of rows is optimal. By reversing roles agaiu, the trans{formed row s in
Ap,. inust also contain only onc non-zcro. Thus PA produces the same result using cither 13y or By, [

This proof shows, however, that |U;| can be dilferent for B, and I3,, and so one basis might be best in
terms of requiring the lcast amount of work. Unfortunately, we know of no way to detcrmine such a basis.

3.4.2. Processing Matrices without (MP)

The next step towards practicality is the major one of dropping (MP). Though the use of (MP’) as
a tool Lo derive an algorithm is quite justified, it does not [ollow that (MP) is actually satisfied by most
real matrices. Indeed, the results in Scction 3.5 show that none of the real matrices tested satislies (MD?).
Now (MP) is formally rcnounced as an assuinption. To simplify matters at first, assume once again that
rank A = m.

Without (MP), as was discussed in Scction 3.3, PA is unuseable in its present forin. To reiterate, it
is unuseable because PA assumes that any squarc submatrix selected by a fixed row-perfcet matching is

- - PP P P S P o < e 4 P 2 L N

e, T Ty Y YTt wT YT oW T o vy v T e T P




T T e T AT e TETwW "W W 7 s - T T oL, v N O YT YO T OVT W WY W OOW YR OTY O Y TORNTTTw W

56 Making Sparse Matrices Sparser Chapter 8

non-singular, which is no longer necessarily true. In contrast, SA has great freedom in choosing the G;. The
advantage of SA over PA is that SA can choose G; by a numerical criterion rather than a combinatorial one.

To sce how SA chooses G, in practice, first note that since A (or a basis of A) starts out with full row
rank, and since A is multiplied by a sequence of non-singular transformations as SA progresses, at any point
in the execution of SA, and for any row subset U, rank Ay, = |U|. Thus Ay, must always have some column
subset G such that Ayg is non-singular. At the appropriate point of SA, Ay, is passed to a subroutine
that can numerically select a G so that Ayg is non-singular. A subroutine that can perform sparse LU
factorizations of rectangular matrices is ideal. In the experimental implementation described in Section 3.5,
a state-of-the-art Harwell black-box subroutine called MA28 is used for this purpose (see Duff (1977)).

A further benefit of choosing G numerically by an LU-factorization is that it neatly combines Steps 2
and 3 of ORA;. That is, since the factorization routine selects the G such that the LU-factorization of Ayg
was was computed, solving for A at Step 3 of ORA; becomes quite easy. Also, a good factorization routine
like MA28 chooses G so that Ayg is fairly well-conditioned. This property gives some assurance that the
reduced A is not much worse conditioned that the original A.

The above method of implementing SA enables it to reliably process real matrices. When SA is applied
to a real problem A, we would ideally like to guarantee that it reduces the number of non-zeros of A at
least as much as il A did satisfy (MP). That is, for a given sparsity pattern A, there is a well-defined
reduction in non-zeros r possible by either PA or SA, independent of the values of non-zero entries of A,
as long as they satisfy (MP) (indeed. it is possible to run either PA or SA on a sparsity pattern totally
combinatorially, without doing any numerical operations whatsocver). Not satisfying (MP) means that
unexpected cancellation can happen, and it seems that such cancellation could only help. Hence it should
be possible to show that at least r non-zeros are ecliminated.

However, proving such a guarantee is somewhat subtle. Consider the full-rank matrix

1 3 05 5
A=1{2 1 4 0 0).
03 05 5

The Sequential Algorithm chooses U; = {3}, and could choose G; = {2}. The associated transformation
unexpectedly zeros out columns 4 and 5 of row 1. If row 2 is processed using the new row 1, SA chooses
Us = {1}. But the parallel U; = 0, which does not contain U, as required by the induction hypothesis of
Theorem 3.3.4. Since the performance of SA depends on the hypothesis, it can not be guarantced that SA
climinates as many non-zeros as the ideal. (A closc reading of the proof of Theorem 3.3.4 reveals that this
difficulty can arisc only when rank Agz < M(Agz) for some zero-section; in the second zero-section of this
example, rank Agz = 1 < 2 = M(ARgz).)

A simple trick avoids this difliculty. As SA executes, at each step it can recognize where non-seros are
expected to occur for subsequent steps. Unexpected cancellation can be recognized in two ways. First, if the
current row is ¢ and a;; 7% 0, § & Gy, but &;; = 0, SA has a lucky hit. Second, if a;; = 0 and 5 € P(U;) \ G;
(the expected fill-in columns), but &;; = 0, then SA has a lucky non-fill-in. When unexpected cancellation
occurs, SA can put a phantom non-zcro in that entry of the matrix (a zero that is treated as if it were a
non-zero). That is, subsequent matchings are performed as il no unexpected cancellation ever took place,
although SA keeps track of which “non-zcros” are really zcros. As long as A initially has full row rank, the
numerical opcrations can never create a dependence among the rows. Thus SA can always find a G so that
Ay is non-singular, even with phantom non-zeros. When SA is modified by using phantom non-seros, it is
called the Safeguarded Sequential Algorithm (SSA).

Theorem 3.4.2: SSA eliminates at least as many non-zeros from any full-rank matrix A as it would if A
satisfied (MP).

Proof: The proof of Theorem 3.3.4 becomes valid once again with SSA, which yiclds the guarantee. O

Of course, it is possible to apply SA on real problems without safeguarding by keeping phantom non-
zeros, but the guarantee of Theorem 3.4.2 is lost. Letting SA “know” about more zeros by removing the
safeguard might give it freedom Lo produce greater reductions, but the experiments in Section 3.5 show no
clcar advantage for cither SA or SSA.

PN S aan ATV W WP W . o

T




B SRR S R

@

{“SEEERES

]

LASl ASR amn 4

M S

L ase

r

Section 3.4.3 Miscellancous Modilications to SA 87

Now we drop the assumption that rank A = m once again. The lollowing example shows that Theorem
3.4.1 is no longer true:

1 1 1 0 ©

-1 0 0 -1 1
A= 0O 0 -1 1 oFf

0 -1 0 o0 -t

Though M{A) = 4, rank A = 3, since the sum of the rows is zero. f the first row is dropped to get a full-rank
submatrix, then ncither SA nor SSA eliminates any non-zeros from A, for a final totai of 7 non-zeros. If the
last row is dropped, then once again ncither SA nor SSA reduces any nou-zeros from A, for a finul tolal of
8 non-zeros. We know of no way for choosing a basis of A that maximizes the final number of non-ucros.
We conjecture that the difference between bases is negligibly small in practice, so that this issue would be a
major concern. The truth of this conjecturc has not yet been empirically tested.

3.4.3. Miscellaneous Modifications to SA

The first step in any implementation of SA or SSA must be the dctermination of a row basis for A.
As discussed above, a routine such as MA28 is idcal for this task. If a row basis is determined through an
LU-factorization as in MA28, an important side benefit can be realized.

Note that an LU-factorization picks out a square submatrix Apc of A such that [R| = |C] =
rank Agc = rank A. As SA or SSA processes Ag,, the partially trausformed Agc remains non-singular
just as Ap, does. Thus, when the algorithm needs to search Ay, for a non-singular submatrix Ay, it can
restrict its search to Ayc. Since [C' is usually much smaller than n, such a restriction can lead to large
savings in time if Ayc instead of Ay, is factored to find G. Of course, restricting the columns in which G,
can occur also restricts the freedom of the factorizalion routine to choosc a well-conditioned G, but since
ARc is chosen to be reasonably well-conditioned, the restricted G; should not be much worse conditioned
than the unrestricted G¢. This modification is called the restricted column option. The resuits in Section
3.5 report on its performance.

There is another modification that can speed up the combinatorial paris of the algorithms. All of the
combinatorial effort of the algorithms involves computing maximum cardinality matchings in zero-sections.
Instead of starting each such matching from the empty matching, it 1s faster to initialize them as follows.
Start by finding a onc-time fixed maximum matching for A, call it M. Then initialize the matching in the
1*h yero-section with M restricted to the columns of the zero-section. An entry in M might be eliminated
at some point during execution of the algorithm. If this should happen, a single augmentation of M before
the next iteration restores M to a maximum matching. This method of initialization is called warm-start
matching.

With warm-start matching a good bound on the combinatorial running time of SA and SSA can be
derived. Let v be the number of non-zcros of A, which can be assumed to be greater than n. Finding the
original M takes O(y/m + nv) time (see Papadimitriou and Stieglits (1982), Theorem 10.3). Copying the
columns of M into a starting solution for the i'" zcro-section takes O(m) time, and hence copying takes
O(m?) overall. After copying M into the i*® zero-section, cach remaining unmatched row in the zero-section
matches Lo a column outside the zero-scction under M. The number of initially unmatched rows in the s*®
zcro-section is at most the numbcer of non-zeros in row ¢ of A, and o the total nuinber of unmatched rows
is at most ». Each unmatched row can lead to at most one augmentation of a matching, so that the total
number of zero-section augmentations is at most ». An augmentation is an O(v) proccss, making the total
time spent in scro-section matching O(v?). Finally, cach entry of M can be climinated at most once (when
its row is processed); therefore, a single augmentation of M might be nceded at most m times. Again cach
augmentation takes at most O(v), for total time O(mv) spent repairing M. Thercfore the total time bound
for the combinatorial running time of SA and SSA with warm-start matching is O(v?).

It is more diflicult Lo obtain an accurate bound on the numerical running time of SA and SSA. In the
worst case, cven with the restricted column option, the algorithma have to factor and solve a lincar system of
sizc O(m) for cach of m rows (plus once at the beginning to obtain a basis for A). Since factoring and solving
one such system is bounded by O(m?), an overall numerical bound is O(m*). However, since A is sparse, the
systems to be solved arc also sparse. An efficiently implemented sparse equation solver like MA28 tends to




58 Making Sparse Matriecs Sparser Chapter 3

solves such systems in time O(v) (see Duff (1977), Table 3), which would give the much better overall bound
of O(mv) for numerical operations.

As a final observation on applying the algorithms to practical problems, note that linear constraints are
usually not presented as a system of equations as in (3.1.3), but as a mixture of inequatities and equations.
Inequalities can be converted to equalitics by adding a slack variable, so that the constraints are then in a
form which is suitable for the algorithims. [lowever, there is another modification that can be used to save
time when inequalities are prescnt.

First, note that an incquality row ¢ can never be used by another row, because its slack column (a unit
vector), is in the zero-section of every other row. It can be assumed without loss of gencrality that the
maximum matching in each such zero-section includes the slack entry. Sinee all other entries in the slack
column are zero, there is no way for row ¢ to be labelled during the matching in that zero-section. Thus row
1 is in the U of no other row. (But row s can itself be reduced by other rows during the algorithm.) Indeed,
whenever a row ¢ has a non-zero in a columnn which is a unit vector, row 1 is never used by any other row.
Thus, if A contains an embedded identity matrix, the algorithm does not reduce A at all.

Given that the slack columns do not participate in the matchings, it is more efficient to create a
single “phantom” column {column 0), instead of many slack columns. In using warm-start matching, all
the inequality rows can be permanently matched to column 0 before finding M. If column 0 is artificially
included among the columns of every zero-section, all the inequality rows initially match to column 0 in
the zero-section since M is used for an initial matching. Since column 0 contains no non-zeros, it is never
labelled during computation of a matching in a zero-section. Therefore, none of the inequality rows is ever
labelled either, so that the inequality rows are automatically not used. Furthermore, since the inequality
rows stay matched throughout the process, this strategy eflcctively reduces the size of the matching problem
in each zero-section.

More :mportantly, the inequality rows can be excluded from A in determining its rank at the beginning,
because inequality rows always have full rank and are never used anyway. Therefore, the square full row
rank submatrix Apc obtained from the initial LU-factorization excluding the inequality rows is suitable
for using the restricted column option, and C is even smaller. These strategics for treating incqualities are
called phantom slacks. By using phantom slacks numerical exccution time can be even further reduced.

The disadvantage of incqualities is that, by decreasing the number of rows available for use, they lead to
smaller reductions of non-zcros. The extreme case is that when all constraints are incqualities, the algorithm
is not able to climinate any non-zeros. A general rule of thumb for using SA and SSA is that the higher the
proportion of cquality constraints, the better.

Finally, potential implementors are reminded that as the rows of A are transformed, the sar-c transfor-
mations must be applied to the right-hand side(s) b. However, any RANGES or BOUNDS (scc Murtagh (1981),
Section 9.2) do not need to be changed.

3.5. Computational Results

In this scction we shall first describe the implementation of an experimental version of the algorithms
of Section 3.4. Some preliminary computational resulls from the implementation are then discussed.

3.5.1. An Experimental Implementation of the Algorithm

The experimental implementation of SA and SSA is a FORTRAN program called SPARSER. The program
reads A in industry-standard MPS format (sce, e.g., Murtagh (1981), Scction 9.2), proccsses it by one of
several variant. algorithms (depending on its input parameters), and outputs the reduced A in MPS format if
desired. The MPS input routine is a modified version of the routine used by MINOS (sce Saunders (1977)),
which uscs Brent's (1973) version of double hashing to reduce time spent in row look-up.

The two biggest tasks for SPARSER are computing maximum cardinality matchings in various sub-
matrices of A, and computing the LU-laclors of various reclangular submatrices of A (and solving the
reaulting square subsystems). The malching is perforined by a modified version of a depth-first scarch
look-ahcad technique, as deseribed in Gustavson (1976). Though this algorithin has poorer worst-case pee-
formance than the Hoperoft and Karp (1973) algorithm, creators of sparse matrix software have empirically
ohserved that, its average performance on typical real problems is better than other algorithms. The lack of

KON

>

. Je

PUT O BI )




¥, e
s

O T,
'.l

»
‘
.

A Az
A LA AP

MOMMEAN 'H
P IARAEA
ot oo .

154

e Al ad A0 A D A as 4
l.l.'];!- JAEL

L 9

B ol o ant}
E_ I S PO

DA
‘o fa t

Section 3.5.1 An Experimcatal lmplemcutation of the Algorithin 59

a realistic random model of sparse matrices has prevented any attempt to provide theoretical support for
this observation.

As mentioned in Section 3.4, the numerical tasks in SPARSER arc handled by MA2x, a package of sparse
matrix LU-factorization and lincar equation-solving routines written by Dull av Harweli (see Dufl (1977)).
The advantage of using MA28 for SPARSER is that it can process rectangular satrices. This feature is
important because the only practical way to choose column subsct 7 from Aye (or from Ay if using the
restricted column option of Scction 3.4) is to factor all of Ay,, which lets (' be dynamically specified by
the choice of pivot columns. MA28 uses a hybrid method for choosing s pivots based on a pivot stability
parameter U which controls the trade-off between stability and sparsity. Setting U == 1.0 inakes MA2s chose
pivots purely on the basis of stability; choosing U = 0.0 makes it choose pivots purely on the Markowitz
sparsity criterion (sce Markowitz (1957)). The value U = 0.1 is recommended i Dufl (1977) and was used
in all tests reported herein. The value of U can be set by an input to SPARSEIR.

MAZ28 has other paramecters of interest to designers of SP algorithms. When M A28 parameter LBLOCK is
.TRUE., M A28 block-triangularizes its input (finds the DM decomposition of a square submatrix) before 1t is
factored. When the chosen submatrix decomposes into relatively sinall blocks, time can be saved since it is
cheaper to factor many small matrices rather than one big one. However, decomposing a submatrix can be
dangerous when the matrix is rectangular.

For example, within SPARSER, the matrix Ay, {(or Apc) {which is known to have rank (U}) is input to
MA28. When MA28 performs a block-triangularization, it first finds a maximum matching M in the matrix,
which must also be of size !I7|. The difficulty is that MA28 forces itsell to factor the size U square submatrix
B induced by M, and it can happen that rank B < |U|. This possibility once again illustrates the reason
why SA is preferred over PA: real matrices do not always have [ull numecrical rank when they have a perfect
maximum malching. A retry function within SPARSER overcomes this difficulty by deleting the column
that MA28 indicates is dependent and re-factoring, but doing this slows SPARSER down. Thus, although
SPARSER includes a way to change LBLOCK, it is sirongly recommended vhat block-triangularization be
disabled.

Another MA28 parameter of interest controls the solution routine and is called MTYPE. If the input matrix
is B and the right-hand side is b, then MTYPE controls whether Bz == b or zI3 = b is the system to be solved.
Since SPARSER necds the solution of A\yAyg = — A, it would seem that MTYPE should be defined so that
the sccond option is always taken. lHowcever, SPARSER subsumes MTYPE into a paramcter of its own that
controls which one of Ay, or Al is input to the factor routine, and that sclects the appropriate valuc of
MTYPE accordingly. This option allows experimentation to determinc whether it is faster to factor rectangular
matrices with the smaller or the larger dimension first within SPARSER. :

Two parameters particular to SPARSER are relevant here. The first specifies which algorithm is used
to process A. When describing algorithms, “combinatorial” means thav an algorithm is applicd formally
to the sparsity pattern of A, without performing any numerical operations. A combinatoriai algorithm is
of usc only as a ast way to determine the performance of an algorithm on a given matrix; sincc only the
sparsity pattern of the reduced matrix is correct, not the numcrical values, the reduced matrix cannot serve
any further useful purpose. By contrast, “numecrical” means that numerical opcrations arc performed, so
that the reduced A is cquivalent to the input A.

With this understanding of terms, SPARSER allows four algorithmic oplions: combinatorial PA, com-
binatorial SA, numerical SSA, and numcrical SA. The first two optious arc mainly used verify the correctness
of SPARSER as it evolves; by Thcorem 3.3.4 they should always give the same final number of non-zecros.
They are also uselul for quickly checking a new matrix, as noted above. The third alternative is SSA as
described in Section 3.4, with the guarantee of Theorem 3.4.2. The fourth alternative is SA without the
phantom non-izcros safeguard of SSA that allows Theorem 3.4.2 to be applicd.

All versions of the algorithm use warm-start matching and phantom slacks as described in Section 3.4,
but the restricted column option is a uscr-sclectable option. The trade-off between decreased stability and
smaller exccution time with the restricted column option can thew be tested.

Four parameters govern how A is processed by SPARSER, cach with two values: SA can be run with
safeguarding or not, block-triangularization or not, factoring A or AT, and using the restricted column
option or not. Thus there arc 16 variant algorithms available through SPARSER.

PRV SRl SeSer Se iy

ol §

e

P

R - ST




R‘r".r" v
. e
PR
LUt

Mt Al S0 Sa
Vs

TP g EUa A Y . haa i R

80 Making Sparse Matrices Sparser Chapter 3

" Red. ! Block | Factor| Use | Total ' Total | Max | Total | Max | No.

Col. | A-ize? {Transp.| Safe- | Time . Gain i Crow | Used | Used {Remat-

Opt.? ! A?  [guard?| | ' chings

| N | N | 232 6] 1ea] 751 350 7

N Y | 230 645] 194] 753] 35| 6

; Y | N T 24l 5| 1 TeL| 37| 7

N Y 241 646 194] 763 37, 6

| NN 332 848 155) 51, 350 11

Y 'Y . 331, 69 155, 753 35, 10

| LY N 3260 641 194] 750] 35, 10

J‘ ! Y 326 612 104 752 35 9

‘ DN | N 115, 642, 1941 7510 35, 9

N Y 175, 643] 194! 753, 35, 8

; Y N ;o183 62 te4) 7360 36 9

Y | v | 180 643, 194 758] 36 8

| N | N | 234 e 6720 755] 36| 12

Y . 239| 643 6720 57| 36) 11

Y ! N 235 eat: 194l 7500 35] 10

LY | 239| e2, 194] 752] 35| 9

Table 3.5.1

3.5.2. Testing the Variations of SPARSER

Each of the 16 variations of SPARSER was used to process a linear programming matrix called BANDM.
These runs held all other minor parameters fixed, and in particular set all print flags to their lowest level and
disabled MPS output of the reduced matrix, to allow the execution time Lo reflect only the basic processing.
The matrix of BANDM has m = 305, n = 472 and contains 2494 non-zeros, a density of 1.73%. It has 305
equality rows, 100% of the total. The combinatorial number of non-zeros that can be eliminated from BANDM
(the guarantee of Theorem 3.4.2) is 633, which is 22.8% of the tota! non-zeros (an impressive figure).

The results of these runs are displayed in Table 3.5.1. All testing was performed while running SPARSER
interactively on VM on an IBM 3081 at the Stanford Lincar Accelerator Center. The “total time” is in CI’U
seconds while running SPARSER interactively on VM. The “total gain” column adds the lucky hits and
lucky non-fill-ins (cach one a proof that (MP) is nol satislied) to the guaranteed combinatorial gain of 633
non-zeros. (Column “max grow” gives the maximum value over all rows of an MA28 output parameter called
GROW. The valuc of GROW estimates the extent to which the numerical opcrations on a row cause the entrics
of A to “blow up” numcrically, and so provides an indircct measure of the stability of the reduced matrix
relalive to the original matrix (see Dufl (1977), pp. 17-18). Column “total used” gives 3 ,|U;|, an indication
of the sizes of the 'inear systems that were solved within SPARSER, and “max used” gives max; //;, which
helps to indicate whether most of the gain is coming from a few rows (“max used” nearly as big as total
used) or is spread ont (“max used” very small). Finally, “no. rematchings” reports how many times out of
the 305 cquality rows an entry of the fixed matching was hit, necessitating repair.

Starting from *he lcss important conclusions that can be drawn from Table 3.5.1, there scems to be
little significant difference among the 16 variations of the algorithm on any of the last five columns, with two

i.
)
b

e

A e b b ACEEN Mt

A 2 4 4 o Bw

y
L_A_._A,;JA._.‘ PP S WA B PN



PRl Sl e
3

...'1

s
2

i i et Pt P

RSO m‘

MCallS

-

v w————— T T A e e it e i S it St Mol Ei i i Aol Bk e M

Section 3.5.3 Testing SPARSIER on lcal Malrices 61

possible exceptions. First, “max grow” varies from 1.55 to 194, which might indicate that some variations
are inherently more stable than others. However, our experience has been that a value of 194 for “max grow”
is no cause for concern, and we conjecture that the lower values of “max grow” resulted more from tuck than
any fundamental dilferences among variations. Sccond, there appears Lo be a slight. trend for the aumber of
rematchings to increase when using block triangularization. However, this possible deficiency pales beside
the other flaws of block-triangularization, as shown by the results below.

There seems to be only random variation in total gain (from 641 to 649), the stated objective. A pattern
might possibly crerge if the 16 varialions were run on a different matrix for which lucky gains were a bigger
part of total gain than for BANDM. It is shown later that BANDM has an atypically small amount of lucky gain.
This issue will be tested further in the future. The only remaining eriterion by which to judge tiic variations
is their exccution times. There is a definite spread of time; the longest time is 3.32 scconds, almost twice
the shortest, 1.75 seconds.

Safeguarding or not makes very little differcnce in time according to Table 3.5.1, though agan this might
change with a matrix with more lucky gain.

Factoring submatrices of A in their normal (as opposed to transposed) form appears to be {uster for this
application, despite the opposite advice of the author of MA28. That is, factoring submatrices of BANDM with
the smaller (row) dinension first was faster, though Duff (1977, p. 28) suggests putting the larger dimension
first. The apparent exception to this observation is that without the reduced column option and with block-
triangularization, in which case factoring the transposc is faster (sce Table 3.5.1). This anomaly scems to be
due to the fact that in both of the cases when subinatrices were normally factored, block-triangularization
caused difliculties by selecting singular matrices four times. The retry routine then caused four extra linear
systems Lo be solved, tipping the time balance to facloring the transpose, which had no bad iuck with block
triangularization.

Besides its other flaws mentioned above, using block-triangularization on BANDM makes SPARSER run
more slowly. This result is initially surprising, sincc block-triangularization is supposed to specd up solving
cquations. An explanation for this behavior can be found in the “total used” column of Table 3.5.1. Since
BANDM has 305 rows, and “total used” is roughly 755 rows, an avcrage of less than 2.5 other rows are
uscd per row of BANDM. Thus the linear systems passed to MA28 are already quite smali, so thit the block
triangularization code adds an overhead greater than any possible savings. Fiven the supposed virtue of block
triangularization is a flaw, thercfore its use in SPARSER is discouraged miore severely than before.

IPinally, using the restricted column option leads to a big decrease in time (which is scarcely any surprise).
Without it, MA28 is passed a matrix whose largest dimension is n = 472. Using the restricted column option,
the largest dimeusion drops to the rank of the equality rows, which is 305 for BANDM, which is i decrease
of 35.4%. Since we suspect that numcrical operations dominate SPARSER’s processing time, such u large
decrcase is bound to have a big cifect on running time.

With these results in mind, the rest of the tests were cunducted with no block triangularization, factoring
A in normal form, using the restricted column option, and using safeguarding. The last choice was made
only because it is better to be safc than sorry.

3.5.3. Testing SPARSER on Real Matrices

The next objective in testing SPARSER was Lo apply it to a viricty of real problems to sce how well
it does in practice. We obtained 23 linear programming problems from [larlan Crowder of the IBM T. J.
Watson Rescarch Laboratory in order Lo investigate the performance of SPARSER. They were sclected solely
on the basis of having a high proporiion of equality constraints, and range in size from AFIRO (which is
27 X 32 with 83 non-zeros) to AIRFSTAR (which is 311 X 3637 with 10,513 non-zeros).

The results of running SPARSER on these 23 problems are displayed in Table 3.5.2. The “rows” and
“columns” figures quotled include only those relevant to SPARSKR (i.c., objective rows and right-hand
sides are excluded), and “non-zeros” counts only Lhose non-zcros in relevant rows and columns. The “%
cq. rows" reports what pereentige of the relevant rows are cqualities; recall from Section 3.4 chat this
figure is potentially important in determining the performance of SPARSER. Three of the matrices have
rank-deliciencies that eifectively reduee the pereent of equality rows in Table 3.5.2 (BOAC from 11.2 to 36 8;
CRACPB1 from 62.2 to 62.0; BRANDY from 75.5 to 72.0); the higher figure is used in Table 3.5.1 sinee it can be

WY W TW e

‘.‘_'.'.‘L-L }

.

Y

PPy

.4 W

LA a

I\ Vg

P I-_Lk

NP . SN




LI A a4 s nen et o Sh gal atil ANl SuEPtagie S it dae Sngadutt Bnd St il Bt

62 Making Sparse Matrices Sparser Chapter 8
| ‘
: Name Ftof ! # of T # of T% Fq. ! Orig. |% Red. |,uckyT| Total ! Max.
: Rows | Cols. |[Non-2s.; Rows |% Den.| Non-Z. | Comh. ; Time | Grow
!L AFIRO 27 32 83 29.6 9.61 0.00 l .08 I
F I
' BOAC 313 298 1659 41.2 1.78 0.00 — ; 1.97 -
rPR580S82 271 1426 2648 82.7 0.69 0.00 o 1.15 -
WEYERHSR 41 107 L 706 97.6! 16.09 85 0.20 .23 2.82
. STORKSOS 68 590 2784, 86.8 6.94 2.44 .58 84 829
(S -
ADLITTLE, 56 97 383 268" 7.05 3.39 .08 .23 45
B -
FRESNO 208 316 1791 47.11 272 3.46 .03 .55 10.6
st —+
LRIMAV 113 1995 9126  99.1  4.05 4.95 3.07 5.62 0.0
L152D 93 1550 9862 , 98.9 6.84 7.16 6.76 2.28 0.0
L21LAV I 108 1939 8779 99.t 4.19 7.34 5.08 2.32 1.0
- + : —— —r
CAPRI! 271 353+ 1767, 524 1.85{ 8.09 01 89! 6.3
LA i ’.
CRACPBI | 143 572 4158 1 62.2 5.08 8.37 2.87 1.77. 0.0
o ChACTOL S| T2 s 22
SHARN2RE . 96 79 I 694, 13.5 9.15 8.50 .23 25 65
L27LAV ' 146 2655 | 11,203 ‘ 99.3 2.89 8.84 5.78 3.99 1.0
—_—— 4 g e
19226 223 282 : 2578 - 4.8 4.10 9.00 1.97 .58 1.0
SHAREIB . '8 225 r t151 75.4 4.37 13.47 .12 55 1810
BRANDY ; 220 249 2148 75.5, 3.92] 14.15 .30 95 45.5
- 1 +
AIRFSTAR ; 3t 3637 ! 10,513 99.0 93| 14.61, 21.26 3.35 1.0
L152LAV’ 97 1989 T 9922 99.0 i B4 16.11 15.82 2.46 1.0
L4t 85'1 1086 4677 984 : 5.07 17.96 9.12 1.50 1.0
_— T t t
L9AMAY 93: 1750 7204! 98.9% 448) 21.02] 1585 5.49 0.0
BANDM , 305[ 472 l 2494 . 100.0 . 1.73| 25.78 .02 2.04 194
BEACONFD 173 L 262 33751‘ RO.?J’ 7.45] 64.06 .80 1.05 136

Table 3.5.2

determined without running SPARSER. The “orig. density” is the density of the original matrix, based on
relevant non-zeros, relevant rows and relevant columns,

The linear programs in Table 3.5.2 arc listed in increasing order of “% decr. in non-zcros,” which is
the total reduction in non-zeros achicved by SPARSER (both combinatorial aud lucky) as a percentage of
relevant non-zeros. It ranges from zero for the first three matrices, to an astounding 64.06% reduction for
BEACONFD. The “ 'YX " column tists Lthe relative contribution of combinatorial gains and lucky gains to the

condh
total gain. For example, BANDM hiad a combinatorial gain of 633 non-zeros and a lucky gain of 10 non-ze: s,
for a ratio of 10/633 - .02, the second-smallest value listed. The “total time” and “max grow” columns

have the same meaning as in Table 3.5.1. The discrepancy in time for BANDM between Tables 3.5.1 and 3.5.2
is due to the fact that the two sets of runs which are summarized in the tables were done several months
apart. Thus times are comparable within tables but not between tables.

The runs summarized in Table 3.5.2 produced other interesting statistics. Firat, the total number of
rematchings over al! 23 linear programs was only 44, with BEACONFD alone accounting for 23. Thus, having
to repair Lhe fixed matehing in warm-start matching does not result in large additional overhead. On a
related note, when the bound on the combinatorial running time of SPARSER with warm-start matching
was computed in Section 3.4, a key fact that was used is that the number of unmatched rows (after copying
the fixed matehing) is bounded by the number of non-zcros. In practice, the number of unmatehed rows
averaged oul as less than 12% of the non-zeros.

S

- -4 Y Dk

NINNAPS JSRIreree




rﬁtv"'r'v_vv_v-ufr*. EARRCM A
PR Y & . . e . PO

Section 3.5.4 Optimising KReduced Matrices 63

The total uscd lor cach linear program reveals that the average {{/;; for the 23 problems w.s only 1.06.
Comparing the “combinatorial gain” and “total used” figures shows that cach used row lcads to a gain of
.92 non-zeros on average. Recali that, by Theorem 3.2.2, each used row can make a cominatorial gain of at
most one non-zcro. Although saved and fill-in colummns must be taken into account w derive the algorithm,
in these runs they are rare events.

Many of the “lucky /combinatorial” figures may scem surprisingly high, but examining “max used” versus
“total used” reveals vhe explanation. For seven of the eight linear programs with “lucky /combinatorial” > 3
{all except for AIRFSTAR, where “max used” is 4), “max used” is cqual or nearly equai Lo “total used”. This
indicates that almost all of the total gain is achieved at one row. All seven of these lucky linear programs
(those whose name starts with L) have one nearly dense row. The dense row is the only one with a non-empty
U,, and the matrices are structured so that cancelling out some of the non-zeros 16 the dense row also luckiiy
cancels out ncarly all the rest.

A high value of “lucky/combinatorial” may be caused by other speciai structures as well. When using
SPARSER in practice, a high value of “lucky/combinatorial” could indicate that a more specialized method
might be more appropriate than SPARSER. Despite having no provision to exploit such structure, SPARSER
achieved creditable reductions on the lucky matrices anyway.

The results in Table 3.5.2 show that SPARSER can significantly reduce many matrices. The degree of
reduction does not appear to be predictable from percentages of equalities or of density  The running time of
SPARSER seems to be quite inodest. Its large valuc on the lucky matrices is dominated by the time needed
to dctermine the rank of the equality rows. Since the lucky matrices have an unusually large number of
columns relative to rows, MA28 is required to factor an apparently huge matrix. Choosing to factor the
transpose of such matrices might prove to be faster. The “max growth” in the reduced matrices was quite
small for most of the linear prograns.

3.5.4. Optimizing Reduced Matrices

Encouraged by the success of SPARSER in reducing this set of matrices, the 15 problems with reductions
of at least 5% (the oncs below the heavy line in Table 3.5.2) were tested in comparative optimization runs.
The optimization program MINOS (see Saunders (1977)) was chosen for these test runs. MINOS is a high-
quality vransportable FORTRAN routine for solving problems of the type (3.1.1). v uses statc-of-the-art
sparse matrix techniques and is in daily use on the SLAC computer for solving a large encrgy model linear
program (see Dantzig et al. (1981)). Rather than having SPARSER pass an internai representation of the
reduced matrix to MINOS, SPARSER output an MF file of the reduced matrix which was then used as the
input for MINOS.

It is not easy to compare the time used by MINOS to optimize an original versus a reduced problem. The
Simplex Algorithm follows the same pivot sequence on both A and TA if T s non-singular, except possibly
mn Phase I. The rcason is that when Phase | adds artificial variables to A and TA, it obtains (A ) and
(TA 1), which are no longer equivalent. Thus Phase I can follow a different pivot sequence on the reduced
problem than on the original problem, which would result in different initial feasible bases for Phase II. The
overall result s a different pivol scquence and a different number of iterations before optimality, making
comparison difficult.

We have attempted to circumvent this problem by starting both the original and reduced problems
with the same feasible basis. This basis is obtained by running MINOS oo the original problem until the
first feasible basis is obtained. Then, in theory at least, both the original and reduced problems follow the
same pivot path to optimality, so that any time dilfcrences can be attributed solely Lo wncreased sparsity. A
drawback Lo this approach is that there are fewer iterations over which the cost of running SPARSER can
be amortized.

Also, it is important to know whether reduced problems have any bias towards taking more or fewer
iterations than original problems. Before we becaine aware of the Phase [ difliculty discussed above, several
pairs of original and reduced problems were optunized starting from a (non-cquivalent} crash basis. No
consistent bias in ilcrations was obscerved, but more formally organized experiments are nceded Lo determine
whether this is holds in general. _

The results of the comparative MINOS runs are summarized in Table 3.53. The “% redn.” column is
copicd froin Table 3.5.2. The “orig. time” and “reduc. time” columns give the total time, in seconds, for

et

b S dedin

-L

L A VTSP

SO TI

..‘_“;‘.‘..

- P

i B

. e e M e

4




:
§
:
2
b
e

oy

MRS |

“Ta

"—‘-"—‘_".'K?‘ R N

64 Making Sparse Matrices Sparser Chapter 3
Zl Name ,r% Redn.| Orig. | Reduc. ]% Redn.|% Redn.| Itn.

! i in Non- Time Time |in Time ! in Time | Ratio

L ' Zeros (sec.) (see.} | (corr.) !(uncorr.)|{or/red)

i Lis2D| 746|842 78| 398| 506 104

L2ILAV|  7.34| 981 938 418 494  1.00

; CAPRI|  808| 204 200 125 219 100

. cracest| 837 270 193] —730] —ase| 12

| SHARE2B| 850 55 530 8.10] 957 95

’ LZZLAV| 8841 1272 1260, 10| 107 100

E226| 9.00| 7.04 680' 320] 357 100

" SHARBIB] 1347 1711 181 5210 636 100

BRANDY| 1115] 2130 198 616 7.92] 100

AIRFSTAR| 1461 583 590, 687! 1050 88

LIS2LAV| 1611 7.95' 684 .19l 320 116

LhaL| 17.98] 380! 332, 594|884 107

LOAMAV! 2102] 636 6280 917] 1165 90

BANDM| 2578 431 368! 1387| 1578 100

BEACONFD |  64.06 90, 63| 942 4017|100

Table 3.5.3

MINOS to solve the original and reduced problems respectively, starting from the same initia! feasible basis,
with MINOS running as a batch job on VM.

The last column of Table 3.5.3 gives the number of iterations for the original problem divided by the
number of iterations for the reduced problem. It shows that starting the original and reduced problems at
the same feasible basis docs not always produee the saime number of iterations in practice; where they differ,
there is no discernible bias favoring cither the original or reduced problem.

Columns 5 and 6 of Table 3.5.3 give estimated percent reductions in the time required to bring the
starting feasible basis to optimality. An cstimate (derived from SPARSER) of time spent inputting the MPS
file was subtracted from the times reported in columns 3 and 4, in order to make the comparison more nearly
reflect, actual differences in time per iteration (the actual time spent iterating in MINOS is not currently
avaitable). The time spent in MPS input depends on the size of the lincar program. Since a matrix reduced
by SPARSER can have considerably fewer non-zeros than the original malrix, inputting a reduced MPS file
can take less time than inputting the original MPS file. The MPS input time uscd to calculate the percent
reduction in column 5 has been “corrected” by the ratio of number of reduced non-zeros to the number of
original non-zeros to try to account for this difference. The percent reduction on column 6 has not heen so
corrected.

More formally, denote the total original optimization time from column 3 of Table 3.5.3 by OT7', the
total reduced time from column 4 by RT, the MPS input time fromn SPARSER by IT, and the iteration ratio
from column 7 by r. Then the value in columns 5 and 8 is

100 (OT - IT) - 7(RT - - IT)
or -1IT
where [ is the ratio of original to reduced non-acros for column 5, and is 1 for column 6. We believe that
the true percent reduction in time lies between the values in columns 5 and 6.

L. a a




Section 3.6 Conclusions and Fxteasions 65

The results in Table 3.5.3 show that reducing the number of non-zeros in these problems doces indeed
reduce the time nceded to optimize them. Though the resuits have a large iunount of variability, as a rule of
thumb it appears that the percent reduction in iteration time is about half the pereent reduction in non-zeros.
In this light, these resulls are encouraging since they bear out the hope that problems with sparser matrices
can be optimized faster. Morcover, SPARSER is sufficiently effcctive at increasing sparsity that the CPU
time noticeably decreased.

But it is discouraging to compare the difference in original and reduced M1NOS times in Table 3.5.3 with
the SPARSER times in Table 3.5.2. In no casce is the SPARSER time swmaller than tace overall time saved i
MINOS. Pre-processing matrices to reduce optimization time is not helpful «f the time saved s smaller then
the time spent in pre-processing.

There are scveral factors that convince us that our algorithm will eventually prove to be practically
uscful in spitc of its apparently unhelpful behavior in these experiments. One factor is that the lLincar
programs that were tested are relatively small and solve relatively quickly Another factor is that because
of the way the experiments were set up, the reduction in time counts only the Phase Il iterations, which
typically are about half of the total iterations {rom a cold start.

The time taken by the algorithm should grow more slowly with increasing problem size than the ume
taken by an optimization routine. For example, Ilillier and Licberman {1974), p. 181, state that the solution
time of lincar programs is usually O(m3), whercas, as stated in Section 3.4, SPAKRSER uscs only O(m?) time.
Thus SPARSEER would perform better on larger problems. Also, pre-processing with the algorithm is a fixed
cost that saves time at every iteration of an optimization, and hence wouid oe of higher utility on more
difficult problems that take relatively more iterations. For examiple, the lucky nnear programs arc actually
integer programs. Solving integer programs typically involves solving the associated linear program many
times, in which case the algorithiu would be more useful.

The current, experimental version of SPARSER spends some time debugging itsell and accumulating
statistics on its performance. A more streamlined implementation would be faster.  Also, oulputting a
reduced MPS filc from SPARSER for input to MINOS is incfficient. A more realistic implementation would
integrate SPARSER into MINOS, thereby ecliminating the unnccessary file-handling time.

On balance, the tests show that increasing sparsity is possible and that it reduces the timme necded to
solve a problem. It remains to be shown (by more extensive tests) whether our algorithm is a practical way
of increasing sparsity. The test results so far are not overwhelmingly encouraging, but they do suggest that
a streamlined version of SPARSER may prove useful.

3.6. Conclusions and Extensions

In the preceding sections we have argued that the Sparsity Problem is irnportant, and onc way to atlack
it has been explored. The key to our approach is that by assuming the Matching Properiy, the One Row
Sparsity I’roblein can be solved (as shown in Section 3.2). The resulting One Row Algorithm is at the heart
of the subsequent developinent.

The Parallel and Sequential Algorithms of Scetion 3.3 are not much ore than clever ways of applying
the One Row Algorithm to each row. Proving their correctness is not trivial, but some interesting theorctical
results arc obtained in return.

Section 3.4 shows that additional cffort is required to bring the Sequential Algorithm 1o a point where it
can be applied to real-life matrices. The practical algorithm described there scems to work reasonably well
judging by the comnputational results in Section 3.5, but different and possibly better ways of implementing
the algorithm are possible.

Oune possibility is a two-pass algorithm that scparates the combinatorial and numecrical parts of the
algorithm, as follows. Theorem 3.3.1 implics that the parallel ¢/ induce an ordered decomposition, the SP
Decomposition, on the rows of A (sce Section 3.3). The SP Decomposition can be found by applying PA
purcly combinatorially to A and observing the sparsity pattern of T°.

The proof of Theorcin 3.3.2 shows that the effect of T° on A is Lo transform “diagonal blocks” of A
{with respeet to some matching) into diagonal submatrices, and “subdiagonal blocks” (with respect to the
same matching) into zero submatrices. The pattern of these dingonal and zero blocks is closely related to the
sparsity pattern of T (sce the example in the proof of Theorem 3.3.2). What is happening is that the lixed




T Te . e T, T, T, T, P W T e e T TR YRR T Y Y TYwR T e oW o

86 Making Sparse Matrices Sparser Chapter 3

matching picks out a square submatrix I3 of A. The matrix T* is composed of various pieces of B~!, the
particular pieces being determined by the SP Decompasition of A. Thus A = T° A is the result of performing
only part of the Gauss-Jordan reduction of A that turns B into a diagonal matrix.

Since the SP Decomposition can be determined combinatorially, it can be known in advance which
part of the Gauss-Jordan reduction of A to perform. Instead of letting a fixed, combinatorially-chosen
matching determine the submatrix B at the start, a partial Gauss-Jordan elimination could be performed
with dynamic, numerically-controlled pivot choices. The pivot choices would then implicitly determine the
submatrix B, but only after the numnerical operations. Such an algorithm would clearly be theoretically
optimal since it eliminates as many non-zeros from A as PA does.

More importantly, a two-pass algorithm is also practically implementable. Since its operations are driven
by numerical choices rather than by combinatorial choices, no difficulties would be encountered in applying
it to matrices without (MP). It might also have an advantage in efficiency over SA.

To see how such an advantage would arise, notc that the goal of Gauss-Jordan elimination is to reduce
the partitioned matrix (B C) (where B is square and non-singular) to (I B~!C). In the dense case,
Gauss-Jordan elimination takes O(n?) operations. The Scquential Algorithm way to achieve the reduction
is to solve for the multipliers that reduce cach row scparately, even though the multiplicrs are interrelated.
Since one such solve uses O(n3) operations in the densc case, this would give an O(n*) algorithm overall.
Similar savings might occur in the sparse case as well.

There are two difliculties with the two-pass algorithm that have prevented its implementation and
comparison with SA. The first is that we prefer a more elegant way of computing the SP Decomposition
than running PA combinatorially. The whole point of the SP Decomposition is that the U are themsclves
interrclated, and hence there should be a way to use the relationships to help compute the U;. The
ideal algorithn would globally develop the SP Decomposition, rather than generating it row by row as
the combinatorial PA does. It would be esthetically pleasing if the combinatorial phase were to parallel the
block (as opposed Lo row by row) nature of the numerical phase. However, such an algorithm is not yet at
hand.

The second difficulty is that a practical implementation of the two-pass algorithm would require its
own numcrical subroutine to perform the partial Gauss-Jordan reduction. The existence of MA28 allowed
implementation of SPARSER in a relatively short period of time. (Indced, a private communication with Duff
reveals that SPARSER is the only application of the capabilities for solving rectangular systems in MA28 of
which he is aware.} Writing such a piece of software so that it is efficient, takes full advantage of sparsity
and is numerically stable is a momentous undertaking.

There is another possible strategy which may improve the practicality of the algorithm. The sparsity
of A is globally improved in the hope that on average the bases are then sparser. The objective of the
Sparsity Problem implicitly assumes that any column is equally likely to appear in a basis. In some situations
there is a priori knowledge about which columns are more likely to appear in a basis than other columns.
Past experience or physical considerations of a model might lead to such knowledge. Alternatively, in an
optimization with many iterations, the frequencies with which each column appcars in a basis could be
recorded in order to apply an algorithin that can take advantage of such information in the midst of the
optimization. Such a strategy would allow the sparsity of A to be dynamically adjusted to reflect information
about the columns that are most active during a long optimization run.

In cither case, the problem of interest is the Weighted Sparsity Problem (WSP). The WSP is the
same as the regular Sparsity Problem except cach column has a weight which represents an estimate of
how likely thal column is to be in a basis. The objective of WSP is to transform A into an A which has a
minimum weighted number of non-zcros. WSP is another area for future research.

As mentioned at the end of Section 3.5, the computational results are only indicative, not conclusive.
It would be very interesting to assemble a large collection of typical large-scale problems with which to test
SPARSER, and to address the following questions. Are the reductions achicved by SPARSER in Table 3.5.2
typical? Is there any association between the form of an optimization problem and SPARSER's performance
on it? (None appears obvious from Table 3.5.2, but perhaps there is a link with the source of the model or
forin of the matrix.) Are the conclusions drawn from Table 3.5.1 still valid on other matrices, particularly
thosce with a higher ratio of “lucky gain” to “combinatorial gain? Is there a stronger association between
reduclion in nou-zeros and speed-up in optimization time than is evident in Table 3.5.3? Finally, and most




Section 3.6 Conclusions and Extcnsions 67

importantly, does SPARSER save more than it costs for large problems?




Al

NEMELE S
. [ S

"YY"TT TS

=

PR S W

_—— —— 0 - po 2l undil S et aadirs
p— S Senes sRoac Jos o T = . i FmCEE B e A =

Bibliography

Bixby, R. and W. Cunningham (1983). Converting linear programs to network problems, to appear in Math.
of OR.

Bollabas, B. (1978). Extremal Graph Theory, Academic Press, London and New York.

Bondy, J. A. and U. 8. R. Murty (1976). Graph Theory with Applications, MacMillan, London.

Brent, R. P. (1973). Reducing the retricval time of scatter storage techniques, Comm. ACM, 16, pp. 105-109.

Coleman, T. F. and J. J. Moré (1981). Estimation of sparse Jacobian matrices and graph coloring problems,
Report ANL-81-39, Argonne National Laboratory, Argonne, IL.

Coleman, T. F. and J. J. Moré (1982). Estimation of sparse Hessian matrices and graph coloring problems,
Corneli University Department of Computer Science Report TR 82-535, Ithaca, NY.

Cottle, R. W. (1974). Manifestations of the Schur Complement, Linear Algebra ard its Applications, 8, pp.
182-211.

Curtis, A. R., M. J. D. Powell and J. K. Reid (1974). On the estimation of sparse Jacobian matrices, Journal
of the Institute of Mathematics and its Applications, 18, pp. 117-119.

Dahlquist, G. and A. Bjorek (1974). Numerical Methods, Prentice-1lall, Englewood Cliffs, NJ.

Dantzig, G. B. (1963). Linear Programming and Kxtensions, Princeton University Press, Princeton, NJ.

Dantzig, G. B., B. Avi-ltzhak, T. J. Connolly, W. D. Winkler, et al,, (1981). PILOT-1980 energy-cconomic
model, volume 1, Electric Power Research Institute, Report EA-2090, Stanford, CA.

Dencker, P., K. Diirre and J. Heuft (1981). Optimization of parser tables for portable compilers, Universitit
Karlsruhe Interner Bericht Nr. 22/81, Karlsruhe.

Duff, I. 8. (1977). MA28 — asct of FORTRAN subroutines for sparse unsymmetric lincar equations, A.E.R.E,
Harwell Report 8730.

Dulmage, A. L.. and N. §. Mendelsohn {1963). Two algorithms for bipartite graphs, J. SIAM, 11, pp. 183-194.

Dirre, K. and G. "els (1980). WEflicicncy of sparse matrix storage techniques, in Discrete Structures and
Algorithms (U. Pape ed.), Miinchen-Wien, pp. 209-221.

Ford, L. R. and D. R. Fulkerson (1962). Flows in Networks, Princcton University Press, Princeton, NJ.

Garey, M. R. and D. S. Johuson (1979). Computers and Intractability, Freeman, San Francisco, CA.

George, J. A. and I'. G. Gustavson (1980) A new proof on permuting to block triangular form, IBM RC
Report 8238, Yorktown Heights, NY.

Gill, . E., W. Murray and M. 1. Wright (1981). Practical Optimization, Academic Press, London and New
York.

Golumbic, M. C. (1980). Algorithmic Graph Theory and Perfect Graphs, Academic Press, London and New
York.

Grimmet, G. R. and C. J. H. McDiarmid (1975). On colouring randoin graphs, Proccedings of the Cambridge
Philosophical Society, 77, pp. 313 -324.

Gustavson, F. G. (1973). Permuting matrices stored in sparse format, Disclosure Number 8-72-001, IBM
Technical Disclosure Bulletin, 16, 1, pp. 357- 359.

Gustavson, F. G. (1976). Finding the block triangular form of a sparse matrix, in Sparse Matrix Compuiations,
Academic Press, New York.

lausmann, D. and B. Korte (1981). Algorithmic versus axiomatic definitions of matroids, Math. Prog. Study,
14, pp. 98-111.

Hillier, . S. and G. J. Licberman (1974). Operations Rescarch, sccond edition, lolden-Day, San Francisco,
CA.

Hoffman, A. J. (1982). Personal cornmunication.

HofTinan, A. J. and S. T. McCormick (1982). A fast algorithm that makes matrices optimally sparse, Stanford
University Systems Optimization Laboratory Report 82-13, Stanford, CA (a revised version is to appear
in the Procecdings of the Silver Jubilee Conference on Combinatorics, University of Waterloo, Waterloo,
Ontario, (1983)).

Hoperoft, §. B. and R. M. Karp (1973). An n%/2 algorithm for maximum matching in graphs, SIAM J.
Computing, 2, 4, pp. 225- 231.

PR . a o P S + o 4 B b P

A VPRI VIR, WA

J" "

i

§
R
|
|
:
"



- -
¢ )
'.' Bibliography 69 ]
1 Iri, M. (1983). Structural theory for the combinatorial systems characterized by submodular functions, to ]
E ‘ appear in the Proceedings of the Silver Jubilce Conference on Combinatorics, Universiy of Waterloo,

s Witerloo, Ontario. :
Itai, A. and M. Rodch (1978). Finding a minimum circuit i a graph, SIAM J. Computing 7, 4, pp. 413 423. g
Johnson, D. S. (1974). Worst case behavior of graph coloring algorithms, in I'roceedings of the Sth Southeastern

Conference on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica, Winnipeg, Manitoba,
pp- 513-527. .,
Karp, R. M. (1972). Reducibility among combinatorial problems, in Complexity of Comiputer Cotuputations

(R. K. Miller and J. W. Thatcher, eds.), Plenun, New York, pp. 85 103.

Kancko, 1., M. Lawo and G. Thicrauf (1982}. On computational procedures for the force methiod, Int. J. for
Num. Meth. in Engr., 18, pp. 1469-1495.

Knuth, D. i. (1973). The Art of Computer Programming, Volume 1, Second Edition, Addison-Wesiey, Menlo
Park, CA.

Lawler, E. L. (1976). Combinatorial Optimization, Holl, Rinchart and Winston, New York.

Markowitz, H. M. (1957). The elimination form of the inverse and its application to lincar programming,
Management Science, 3, pp. 255-269.

McCormick, S. T. (1981). Optimal approximation of sparse [lessians and its cquivalence to a graph coloring =
problem, Stanford University Systems Optimization Laboratory Report SOL 81-22, Staaflord, CA (a
revised version appears in Math. Prog., 26 (1983), pp. 153-171).

McCorinick, S. T. (1983). A combinatorial approach to some sparse matrix problems, Ph. D. Thesis, Stanford
University, Stanford, CA.

Murtagh, B. A. (1981). Advanced Lincar Programming and Practice, McGraw-Hill, New York.

Newsam, G. N. and J. D. Ramsdell (1982). Estiination of sparse Jacobian matrices, Harvard Uaiversity
Division of Applicd Scicnces Report TR-17-81, Cambridge, MA.

Papadimitriou, C. H. and K. Sticglitz (1982). Combinatorial Optimizatiou: Algorithis and Complexity,
Prentice Hall, Englewood Cliffs, NJ.

Peters, G. and J. Il. Wilkinson (1970). The least squares problem and pscudo-inverses, Cowputer J., 13, pp.
309 -316.

. Powell, M. J. D. and P. L. Toint (1979). On the estimation of sparsc Hessian matrices, SIAM Journal on

A Numerical Analysis, 16, pp. 1060 -1074.

P Ryser, 1. J. (1963). Combinatorial Mathematics, MAA Camus Mathematical Monograph Number 14,

LA Ak A

Providence, RI.

Saks, M. and J. Kahn (1983). Personal communication.

Saunders, M. A. (1977). MINOS systemn manual, Stanford Systems Optimization Laboratory Report SOl
77-31, Stanford, CA.

Stockmeyer, L. J. (1982). Personal communication.

Thapa, M. N. (1980). Optimization of unconstrained functions with sparse Hessian matrices, Ph. D. Thesis,
Stanford University, Stanflord, CA.

Welsh, D. (1976). Matroid Theory, Academic Press, London and New York.

Widgcrson, A. (1982). A new appproximate graph coloring algorithm, Proccedings of the Fourteenth Annual
ACM Symposium on Theory of Computing.

'v.—ﬂv'r.v'" -y -
LT T

'A“'ALAAJAKA.L_.LLJ 4

Ty YT T
a6 SRS
PP .4

CI Rk ML e e P00 Agdiha i v,
A !: o B ! .
v AN R -

i . SPSPRIUPUTETST SR,




UNCLASSIFIED v}

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 01
REPORT DOCUMENTATION PAGE BEFORE COUBL LTS ot
N REFORT NUMBER 7, GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOC NUMBER !
SOL 83-5 , ‘
/1&4/’ N 3 ’ _?é}’?
s TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED >
)
A COMBINATORIAL APPROACH TO SOME SPARSE Technical Report
MATRIX PROBLE‘MS €. PERFORMING ORG. REPORY NUMBER
Qf;;;no.“, T CONTRACT OR GRANT NOWBER(
S. Thomas McCormick N00O014-75-C-0267 )
DAAG29-81-K-0156 1

l__.____.—___.o__ Ty e —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Department of Operations Research - SOL AREA & WORK UNIT NUMBERS
Stanford University NR-047-143
Stanford, CA 94305

“ ‘|.|

12. REPORT DATE

Oftice ot Naval Research - Dept. of the Navy June 1983
800 N. Quincy Street S NUNSEROF PAGES .
Arlington, VA 22217 €9 PP .
T4, MONITORING AGENCY NAME & ADDRNESS(If dilferent from Controlling Office) | 18. SECURITY CLASS, (of this repost) :
U.S. Army Research Office -
P.0. Box 12211 UNCLASSIFIED o
Research Triangle Park, NC 27709 T8a ts:g&ggtngucnﬁon/ooncnomc
6. DISTRIBUTION STATEMENT (of thie Report) 'J
This document has been approved for pubiic release and sale; ]
its distribution is unlimited. "
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i different from Report)
j
|

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side /f necessary and identify by block number)

i B

sparse Hessian approximation NP-complete

graph coloring heuristics direct methods

sparse matrices elimination methods )
bipartite matching linear constraints

computational complexity

[P -

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

SEE ATTACHED

o .4

s e

DD , :2::"" 1473 eoimon oF 1 wov es 13 oRsOLETE

~esURITY CLASSIFICATION OF THIS PAGE (When Date Entered) !

. PR AP P G T S Wl T YA Y ST GUE GRT Wy S G W 0 R W P Z - — A & _a




T T e e

—— A S B Wb - S0 tash e e ettt ende e anadhs Mk el Saai-edRCAAriE A il D SN A el T

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SOL 83-5, "A COMBINATORIAL APPROACH TO SOME SPARSE MATRIX PROBLEMS,"
by S. Thomas McCormick

This dissertation considers two combinatorial problems arising in large-
scale, sparse optimization. The first is the problem of approximating the
Hessian matrix of a smooth, non-linear function by finite differencing,
where the object is to minimize the required number of gradient evalua-
tions. The second is to find as sparse a representation as possible of a
given set of linear constraints.

For the first problem, it has recently been realized that when the Hessian
has a fixed, known sparsity pattern, a considerable reduction in gradient
evaluations can often be achieved by a suitable choice of difference direc-
tions. This dissertation advances a way of classifying the various methods
that have been proposed for choosing difference directions, and shows that
finding an optimally small set of directions for any of the four sub-
varieties of the Direct Methods is NP-Complete. The complexity results are
obtained by showing that finding optimal sets of difference directions is
equivalent to related graph coloring problems. Some results for more
general methods are reported that yield good lower bounds on the minimum
number of gradient evaluations needed to approximate many Hessians.

The second problem has been shown to be NP-Complete. By adopting a fairly
mild non-degeneracy assumption we are able to derive a low-order polynomial
algorithm which reduces given constraints into an optimally sparse
equivalent set of constraints. This algorithm is based on bipartite match-
ing theory, and it induces a partial order on the rows of the matrix which
is related to Dulmage-Mendelsohn decomposition. The proof that the
algorithm is correct yields a performance guarantee when the algorithm is
applied to real data, and several modifications that improve its running
time are discussed. Some computational experience is presented which
indicates that the algorithm may be practically useful as a preprocessor
for linearly constrained optimization. We also discuss the relationship of
this research to finding optimally sparse null-space bases, and to the
complexity of matroid oracles.

SECURITY CLASSIFICATION OF Tu'® PAGE(Whe.  ate Entered)

TR T E T TR

PP 'y

.3 A

»







